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Abstract 
This study focuses on forecasting monthly mean rainfall in District Dir (Lower) using various 

ARMA models to identify the most suitable approach for accurate rainfall prediction. Rainfall 

forecasting is a critical and intriguing area of study, and the Box-Jenkins methodology, which 

employs ARMA models, is highly effective for analyzing and forecasting time series with diverse 

patterns of variation. The ARMA modeling process involves defining, estimating, diagnosing, and 

forecasting stages, making it well-suited for this application. Based on the analysis, the ARMA 

(4,4) model emerged as the best fit for the dataset, evaluated using SIGMASQ, AIC, and SC 

criteria, which yielded the smallest values and confirmed through the Ljung-Box Q-test. Using the 

ARMA (4,4) model, the study successfully forecasted monthly mean rainfall in District Dir (lower) 

from June 2022 to May 2028. 

Keywords: Ljung-Box Test, Forecast Accuracy, Rainfall Forecasting, ARMA Models, Time 

Series Analysis Box-Jenkins Methodology, Time Series Analysis. 

 

Introduction  
Statistical forecasting involves using time series data—chronologically ordered observations 

collected over time—to predict future events accurately. It is critical in planning and decision-

making across various disciplines, including business, economics, healthcare, engineering, 

environmental research, and finance (Box & Jenkins, 1970; Hyndman & Athanasopoulos, 2018). 

Accurate forecasting relies on scientific methodologies and the analysis of historical data rather 

than conjecture, ensuring more informed judgments and practical actions to address various 

challenges. Time series data, such as daily stock prices, hourly temperature readings, or annual 

growth rates, are extensively utilized in fields like medicine, environmental studies, and industrial 

processes. The primary goals of time series analysis include understanding the dynamic structure 

of a single series and identifying interactions among multiple series. This understanding helps 

improve the accuracy of predictions and supports the design of optimal control strategies 

(Hamilton, 1994). The success of forecasting hinges on selecting and fitting appropriate models to 

the data. Over the decades, researchers have developed advanced techniques and tools to enhance 

forecasting accuracy, aided by computational advancements (Makridakis et al., 1998). Forecasting 

has thus become a focal point in statistical research, intending to improve the predictive power of 

models used for dependent variables. Scientific forecasting fundamentally depends on thoroughly 
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evaluating historical patterns, identifying variables influencing the data, and leveraging 

mathematical and statistical modeling. This approach ensures a comprehensive understanding of 

past occurrences and enables predicting future outcomes with excellent reliability and precision. 

 

Forecasting 
Time series models are foundational for analyzing and forecasting processes or statistics over time. 

They are widely applied in various domains, such as inventory management, weather forecasting, 

and sales predictions, providing a reliable basis for decisions under future uncertainty. These 

models are particularly valuable in aiding organizations in anticipating and preparing for uncertain 

future conditions. Additionally, integrating time series models with data mining techniques 

enhances understanding of data behavior and facilitates the prediction of trends and patterns (Box 

& Jenkins, 1970; Hyndman & Athanasopoulos, 2018). Forecasting is essential to effective 

planning across management, business, economics, and administration. It supports decision-

making where lead times vary significantly—from years to seconds. However, successful 

forecasting requires distinguishing between uncontrollable external events and controllable 

internal factors. While forecasting predicts external events, decision-making addresses internal 

processes, with planning as the critical link between the two (Makridakis et al., 1998). 

Organizations use diverse forecasting methods, from simple techniques like naive forecasts to 

advanced methods like neural networks and econometric models. Forecasting plays a crucial role 

in scheduling, resource acquisition, determining resource requirements, and addressing short-, 

medium---, and long-term organizational needs. Effective forecasting requires organizations to 

excel in four key areas: defining problems, applying various forecasting methods, selecting 

appropriate techniques for specific situations, and building robust support systems for 

implementing formalized forecasting processes (Holt, 2004; Armstrong, 2001). 

 

Steps for Forecasting in Quantitative Data  
Forecasting quantitative data involves five key steps: defining the problem, gathering information, 

conducting a preliminary exploratory analysis, selecting and fitting models, and using and 

evaluating the chosen forecasting model. An essential aspect of selecting an appropriate method is 

understanding the data patterns, which helps identify suitable forecasting techniques. Time series 

data typically exhibit one of four patterns: horizontal, seasonal, cyclical, or trend. Horizontal 

patterns occur when data values fluctuate around a constant mean. Periodic factors, such as months 

or days of the week, influence seasonal patterns. Cyclical patterns involve rises and falls without 

a fixed periodicity, while trends reflect the long-term movement of data, which can be increasing, 

decreasing, or stable. Recognizing these patterns is crucial for accurate and effective forecasting. 

 

Introduction to Forecasting the Climate 
Climate change for a region refers to long-term variations in meteorological factors such as 

temperature, precipitation, and wind speed. In Pakistan, an agro-based economy, changing rainfall 

patterns significantly impact crop success or failure. Global and regional studies indicate an 

increasing trend in mean surface air temperature, with human influence being dominant since the 

mid-20th century. This study uses the Box-Jenkins methodology to apply statistical methods in 

time series analysis to identify the best-fitted model for analyzing rainfall trends. The best-fitted 

model is selected based on criteria like the Akaike Information Criterion (AIC) and Schwarz 

Information Criterion (SIC), which measure the relative quality of statistical models. AIC 

estimates model quality by balancing goodness-of-fit with complexity, making it a valuable tool 
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for model selection. The forecasted rainfall trends are interpreted using the selected model, 

providing insights into future climatic conditions. 

𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿̂) 

For a large set of models of data, the preferred model is the one with the minimum AIC value. AIC 

is a goodness of fit, but it also includes a penalty that is an increasing function of the number of 

estimated parameters. The penalty discourages overfitting because increasing the number of 

parameters in the model almost always improves the goodness of fit. The Schwarz Criterion is a 

criterion for selecting among formal econometric models. The Schwarz Criterion is a number and 

it can be defined as  

𝑆𝐼𝐶 = ln(𝑛)𝑘 − 2ln (𝐿̂)  

where 𝑛 is the number of data points in x, the number of observations, or equivalently, the sample 

size. 

 

Objectives 

 To evaluate the effectiveness and suitability of ARMA models or the BoxJenkins approach to 

determine the best model for predicting monthly mean rainfall in Dir (L) 

 To determine the best-fitted model to forecast the mean rainfall in Dir (L) 

 To evaluate and confirm the best ARMA model to predict average monthly rainfall 

 Using the best-fitted model, projecting the average monthly rainfall for the future years in 

district Dir (L) 

 

Literature Review 
There are many previous studies for time series data that have used the method of Box Jenkins in 

the forecasting of rainfall. The Box-Jenkins methodology involves four steps: (i) identification (ii) 

estimation (iii) diagnostic checking and (iv) forecasting. First, the original series must be 

transformed to become stationary around its mean and its variance. Second, the appropriate order 

of p and q must be specified using autocorrelation and partial autocorrelation functions. Third, the 

value of the parameters must be estimated using some non-linear optimization procedure that 

minimizes the sum of squares of the errors or some other appropriate loss function. Diagnostic 

checking of the model adequacy is required in the fourth step. This procedure is continued until an 

adequate model is obtained (Holt, 2004).  

Numerous meteorological elements, including climate change, air temperature, and atmospheric 

pressure, have an impact on rainfall, one of the most significant hydrological processes. Even 

though there are numerous stochastic and data-driven hydrological models is still difficult to 

predict rainfall accurately, especially at mallet time scales. The irregular nature of rainfall makes 

it difficult to model well (Lauritzen, 1974).  

In a country like India which is heavily dependent on agriculture, accurate and efficient forecasting 

methods for varied climatic situations are essential. Due to the simultaneous occurrence of three 

patterns, namely temporal, spatial, and non-linear, forecasting rainfall is one of the most difficult 

problems in this environment. One of the promising and well-liked methods for modeling 

spatiotemporal time series data is the Space-Time Autoregressive Moving Average (STARMA) 

model (Box & Jenkins, 1976). 

Using an auto-regressive integrated moving averages (ARIMA) approach, this work focuses on 

the spatial-statistical analysis of rainfall fluctuation, anomaly, and trend in the Hindu Kush region. 

In the studied area, variations in river discharge have a substantial  impact on rainfall trends, which 
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finally caused floods and a hydrological drought. Rainfall has been employed as a climatic 

parameter in this study (Bowerman & O’Connell, 1979). 

Changes in precipitation and temperature, which are influenced by the dynamic structure of the 

climate, can be investigated via time series analysis. The Bhagirathi River basin, located in the 

Indian state of Uttarakhand, is the subject of this study's assessment of time series and seasonal 

analysis of the monthly mean minimum and maximum temperatures and precipitation. The data 

used ranges from 1901 to 2000. (100 years). Using the seasonal ARIMA (SARIMA) model, 

forecasting for the following 20 years was performed (2001–2020). The Box Jenkins technique is 

the foundation for the autoregressive (p) integrated (d) moving average (q) (ARIMA) model, 

which forecasts future trends by making the data stationary and eliminating seasonality (Box et 

al., 1994).  

Rainfall is crucial for forecasting the weather, especially for the agriculture industry and the 

environment, both of which have a significant impact on the country's economy. Therefore, 

hydrologists must anticipate daily rainfall to support other individuals working in the agriculture 

sector with their harvesting schedules and ensure that their crops will produce satisfactory results. 

This project will use the ARIMA model and an Artificial Neural Network (ANN) model to 

anticipate the daily rainfall's future value (West & Harrison, 2006). 

Due to the lack of data and simplicity of earlier methods, time series, and data-driven methods 

have been utilized as complementary tools for forecasting ISMR versus the intricate physically 

based dynamical models. The most recent advancement in the many methods for predicting rainfall 

is the use of hybrid decomposition data-driven models, however, these methods have quite varied 

frameworks. The Adaptive Ensemble Empirical Mode Decomposition-Artificial Neural Network 

(AEEMD-ANN) model for forecasting is a framework for adaptive hybrid modeling presented in 

this paper (Unnikrishnan & Jothiprakash, 2020).  

The main goal of the current study is to fit a model to the automobile insurance data gathered from 

the insurance industry over 36 years to forecast the 10 amount of the personal damage claim. By 

taking into account the standard deviation (SD) statistic for the time series data from 1981 to 2016 

and using the Box-Jenkins financial econometric approach, the Auto-Regressive Integrated 

Moving Average (ARIMA) model for the data has been constructed in this work (Saha et al., 

2020). 

India's agricultural methods and crop harvests are highly reliant on climate elements like rainfall. 

As a result, improved information for planning and developing agricultural strategies could be 

obtained from more accurate rainfall predictions. Numerous research teams have tried utilizing 

various ways to predict rainfall. In this work, single-order models of the Autoregressive Integrated 

Moving Average (ARIMA) class have been employed to forecast rainfall (Dawood et al., 2020). 

 As modeling tools, multivariate adaptive regression splines (MARS) and k-nearest neighbors 

(KNN) were used in two artificial intelligence (AI)-based models. Using minimum, maximum, 

and mean air temperatures, dew point temperature, station pressure, vapor pressure, relative 

humidity, wind speed, and antecedent precipitation data, nine single input scenarios under limited 

climatic data are implemented. The obtained findings show that while simulating the monthly 

precipitation, the performance of MARS and KNN alone is comparatively subpar. Additionally, 

by merging the MARS and KNN models with three other types of time series (TS) models, namely 

autoregressive (AR), moving average (MA), and autoregressive moving average, this study builds 

hybrid models to improve the precipitation modeling (ARMA) (Dimri et al., 2020). 

Due to its significant influence on all aspects of human existence, including agriculture, air traffic 

management, and public health and safety, weather forecasting has drawn researchers from all 
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over the world over the years. Although thorough research on weather forecasting dates back to 

the 19th century, research on weather forecasting tasks has considerably grown since weather-big 

data became readily accessible. This article suggests using the grid technique to forecast greater 

visibility for the varying values of the parameters p, d, and q using an auto-regressive integrated 

moving average (ARIMA) model (Masngut et al., 2020).  

Data on rainfall have been forecast using a variety of forecasting techniques. One forecasting 

technique that could produce improved projections is the Kalman Filter. To our knowledge, rainfall 

data in Makassar, Indonesia, have not been forecast using the Kalman Filter approach. This study 

employs the Autoregressive Integrated Moving Average (ARIMA) and Kalman Filter methods to 

create more accurate rainfall forecasts for Makassar, Indonesia (Johny et al., 2020). 

In the majority of the world, statistical and numerical analysis is still used in weather forecasting. 

Although statistical and numerical analysis yields better findings, it heavily depends on consistent 

historical relationships between the prediction and the predicted value as a predictor of future 

events. On the other side, machine learning investigates fresh, data-driven algorithmic approaches 

to prediction. A location's climate is affected by a variety of variable factors, including 

temperature, precipitation, atmospheric pressure, humidity, wind speed, and a mixture of other 

variables of this sort (Kumar et al., 2020).  

Predicting precipitation accurately can help with preparing for various demands on water resources 

management and extend lead times for tactical and strategic planning of courses of action. This 

paper investigates the suitability of several wavelet packet decomposition (WPD)-based 

forecasting models for predicting yearly rainfall, and a unique hybrid WPD-ELM precipitation 

prediction framework is developed (Ghule et al., 2020). 

Forecasting rainfall can help people live and produce more. However, the short-term rainfall 

forecasting accuracy of the present approaches is typically subpar. The geographic features of the 

rainfall area have no bearing on machine-learning approaches. The surface and high-altitude 

geographical peculiarities cause the prediction accuracy to constantly vary in different regions. A 

surface and high-altitude Combined Rainfall Forecasting model (ACRF) is suggested to increase 

the prediction accuracy of short-term rainfall forecasting (Mehdizadeh, 2020).  

A technique created in a certain temporal order for prediction is called time series analysis. The 

ARIMA model developed by Box and Jenkins is one of the time series analysis models utilized 

for forecasting. The Kalman Filter technique was one of the algorithms used to create the ARIMA 

model over time. To forecast rainfall using ARIMA and ARIMA Kalman Filter, this work attempts 

to estimate the parameters of the ARIMA model used as the starting value of the Kalman Filter 

(Salman, & Kanigoro, 2021). 

Forecasting rainfall is necessary to manage water resources and make prompt decisions to reduce 

the negative effects of unforeseen events. Given that the factors influencing rainfall might fluctuate 

over the year, one strategy for putting forecasting models into practice is to create a model for each 

period in which the mechanisms are essentially constant, such as every season. The final models 

perform better because the selected predictors can be more reliable. From a practical standpoint in 

the tropical Andean region, it has not been determined whether the approach indicated above 

delivers improved performance in forecasting models (Ananda & Wahyuni, 2021). 

The ability to predict days with heavy rain in advance is crucial for the effective management of 

weather-dependent activities because heavy rain harms ecosystems, causes flooding, makes up a 

major portion of the region's overall rainfall, and affects ecosystems. Numerical weather prediction 

models have historically been used to make weather predictions, but they are not without 

restrictions. Tools utilizing artificial intelligence and machine learning have grown in popularity 
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recently in this regard. The current study used a lengthy time series of rainfall data to determine 

the heavy and light rainfall days using the Gaussian Process Regression (GPR) approach, one of 

the machine learning approaches (Balamurugan & Manojkumar, 2021). 

Farmers may benefit from accurate rainfall forecasts because the weather influences important 

decisions like crop selection and when to plant. The univariate time series ARIMA model may 

simulate stochastic processes using only historical data (Wang et al., 2021). 

Since it is related to urban water management, rainfall forecasting in urban areas is a significant 

concern for city planners. In this study, the annual rainfall in Kolkata Municipal Corporation 

(KMC), West Bengal, was predicted using the ARIMA (auto-regressive integrated moving 

average) model as well as some regression techniques, including simple linear and second to sixth-

degree polynomial regression equations (Zhang et al., 2021).  

The current study focuses on one of the most significant climatic factors, precipitation, to analyze 

the rainfall pattern in five districts (Chhatarpur, Damoh, Panna, Sagar, and Tikamgarh) of Madhya 

Pradesh's Bundelkhand region, a semi-arid area. Despite the presence of multiple irrigation 

schemes, the quality of irrigation services remains subpar, and the majority of cultivated land still 

relies on rainfall. Since agriculture is the primary livelihood activity in this region, understanding 

the temporal fluctuations of rainfall is crucial for assessing climate-driven changes and proposing 

effective adaptation measures. Statistical analysis techniques, including the Mann–Kendall test, 

Sen’s slope estimator, the MGCTI “Bertin matrix,” and climate extreme indices (CDD, R95p, and 

RX1Day), were used to analyze seasonal, monthly, and annual rainfall trends and variability from 

1951 to 2018. Additionally, the Autoregressive Integrated Moving Average Model (ARIMA) was 

applied to forecast annual rainfall in the study area for the period 2019 to 2050 (Mehta & 

Sukmawaty, 2021). 

Rainfall and temperature are two key factors to examine while assessing climate change. 

Bangladesh has witnessed extremes in rainfall and temperature during the previous few decades, 

affecting both the environment and the agricultural economy. In this study, the ARIMA model is 

used to predict and forecast rainfall and temperature in Chattogram, Bangladesh from 1953 to 2070 

considering seasonal variations (Amelia et al., 2021). 

 

Methodology 
Statistics is vital for forecasting and decision-making, providing numerical estimates that aid in 

planning. Time series analysis, a key statistical method, studies phenomena over time to predict 

future events with minimal error. It is essential in applied fields and sales forecasting, requiring 

stationary data for accurate predictions, where stationarity is determined by specific statistical 

properties. 

 

Time Series 

A time series consists of quantitative observations organized by time intervals, such as years, 

months, or days, and is used to predict future events. Mathematically, a time series is represented 

by a set of values. 𝑧1, 𝑧2,𝑧3, 𝑧4,𝑧5, …, where each value Zt corresponds to a specific time t. These 

values are derived from random variables with their probability density functions. The joint 

probability density function describes the relationship between multiple time points in the series 
 

Time Series Data 

This research focuses on the time series data of average monthly rainfall in District Dir (L), Khyber 

Pakhtunkhwa. The data spans from January 2013 to May 2022 and was obtained from the Regional 

Meteorological Department of Dir (L). 
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Components of Time Series 

Economic phenomena are influenced by a variety of factors, both directly and indirectly, leading 

to multiple variations over time. Time series analysis helps in understanding the behavior of these 

phenomena by studying their historical development. Statisticians identify four basic components 

within time series data. The first component is the Trend Component (T), which refers to the long-

term direction of the data, showing a gradual increase or decrease over time. This change is 

noticeable after a longer period compared to other components. The second is the Seasonal 

Component (S), representing regular, predictable changes occurring at fixed time intervals (e.g., 

quarterly, monthly), often caused by external factors affecting the data. The third component is the 

Cyclical Component (C), which involves changes occurring over longer periods than a year. These 

changes are irregular and do not follow a regular interval, distinguishing them from seasonal 

fluctuations. 

 

Stationary and Non-Stationary Time Series 

Time series data can be classified as stationary or non-stationary. Stationary time series exhibit 

fluctuations around a constant mean, with two types: strongly stationary, where the joint 

probability of values does not change over time, and weakly stationary, where the mean, variance, 

and autocovariance are constant. Non-stationary time series exhibit trends or cyclical changes that 

alter over time, making them difficult to analyze directly. Most real-world time series can be 

transformed into stationary series through methods like differencing, which removes trends and 

seasonality. To address non-stationarity, techniques such as first or second differencing are used, 

and transformations like taking logarithms or square roots can stabilize variance. Seasonal 

components can be removed using seasonal differencing. After these adjustments, the time series 

becomes stationary, enabling more accurate forecasting and modeling. 

 

Test of Stationary Series 

Economic variables are typically non-stationary time series due to their tendency to follow general 

trends, making them challenging to model. To address this, these time series need to be 

transformed into stationary time series. Various methods are used to test and ensure the stationarity 

of time series before further analysis or modeling. 

 

Autocorrelation Function (ACF) 

The autocorrelation function measures the correlation between neighboring observations in a time 

series. It serves two main purposes: detecting non-randomness in the data and identifying the 

appropriate time series model when the data are not random. The sample autocorrelation function 

at lag k is used to quantify this correlation. 

𝛾(𝑘) = ∑ 𝑛− (𝑍𝑡−𝑍̅ 𝑘 𝑡=1 )( 𝑍𝑡+𝑘−𝑍̅) ∑𝑛 (𝑍𝑡−𝑍̅ 𝑡=1 ) , k=0,1,2,3,… …………………………(1) 

Where 𝛾(𝑘) is an estimator for 𝜌(𝑘). This function allows the calculated autocorrelation coefficient 

between the observation of different periods, and the value of the autocorrelation coefficient would 

be −1 ≤ 𝜌(𝑘) ≤ 1; with values near ±1 indicating stronger correlation. In the case of stationary the 

worth would be equal to zero 𝜌(𝑘) = 0 as any correlation coefficient which means non-

autocorrelation coefficients.  

𝜌(𝑘) = 𝛾𝑘 𝛾0 , k=0,±1, ±2, … ……………………………………………………………………(2) 
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Models of Time Series in Forecasting 

Time series forecasting methods, such as Autoregressive (AR), Moving Average (MA), Mixed 

(ARMA), and Integrated Mixed (ARIMA) models, rely solely on the historical values of a variable, 

without considering other explanatory variables. These models apply to phenomena with suitable 

time series data. This research focuses on ARMA models, which will be used for forecasting in 

the study. 

 

Autoregressive Models 
The autoregressive model (AR) expresses the current value of a time series as a weighted sum of 

its previous values and a random error. The moving average model (MA) expresses the current 

value in terms of weighted past errors. The mixed model (ARMA) combines both AR and MA 

models, offering greater flexibility in representing time series data. ARIMA models 

(Autoregressive Integrated Moving Average) are an extension of ARMA models that address non-

stationary time series. They include three components: AR (autoregressive), MA (moving 

average), and I (integration for making the series stationary). ARIMA is written as ARIMA(p, d, 

q), where p is the order of the AR model, q is the order of the MA model, and d represents the 

number of differences required to make the series stationary. 

 

Model Building Stage of Time-Series Data 

The Box-Jenkins method for time series forecasting consists of four primary stages. The first stage, 

model identification, involves analyzing the time series to determine the appropriate model, such 

as AR, MA, ARMA, or ARIMA, by examining patterns like autocorrelation and stationarity. In 

the second stage, estimation of model parameters, the parameters of the identified model are 

estimated using techniques like maximum likelihood estimation. The third stage, diagnostic check 

of the residuals, involves checking the residuals (errors) to ensure they resemble white noise, 

which indicates that the model has successfully captured the underlying patterns in the data. The 

final stage, model adequacy and forecasting, evaluates the model’s accuracy and uses it to forecast 

future values. If the model is found to be inadequate, adjustments may be needed, requiring the 

process to be revisited or re-estimated. 

 

Diagnostic and Graphical Analysis 

In the diagnostic phase of developing a Box-Jenkins model, the first step is to determine whether 

the time series is stationary or non-stationary. Graphical analysis is the initial stage, where the time 

series data is plotted over time. This visualization helps identify patterns such as trends, 

seasonality, or abnormal values. By observing the plot, it becomes clear if the series is non-

stationary, as it may show fluctuations in mean or variance. If non-stationary, further 

transformations are needed to stabilize the series before proceeding with analysis. 

Stages of building model of the time series: After identifying the statistical properties of stationary 

time series and transforming the method of non-stationary series to the stationary series, we will 

come to know the forecasting method by using the random method that is known as the Box-

Jenkins method. There are four primary stages in building a Box-Jenkins time series model. These 

are model identification, estimation of the model parameters, diagnostic check of the residuals, 

model adequacy, and forecasting. These stages can be summarized as follows: 
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Figure 1: Box-Jenkins Modeling Approach 
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The diagnostic phase in developing a Box–Jenkins model involves determining whether the time 

series is stationary or non-stationary. This begins with a graphical analysis, where the series is 

plotted over time. The plot provides insights into key characteristics such as trends, seasonal 

components, or outliers, helping to identify non-stationarity. If the series shows instability in its 

mean or variance, appropriate transformations are applied to stabilize it before proceeding with 

further analysis. 

 

Autocorrelation Function and Partial Autocorrelation Function Plots 

The autocorrelation function (ACF) and partial correlation function (PACF) are used to detect the 

stationary or non-stationary time series and a test of significant autocorrelation coefficients using 

the Ljung-Box Chi-Square test (Q–test). 

The Ljung-Box test can be defined as follows. 

H0: The series is stationary. 

H1: The series are non - stationary. 

Obtain AC and PAC 

Forecast 

Is Series Stationary 
Apply Regular 

Difference 

Model Selection 

Estimate Parameter Values 

Are Residuals 

Uncorrelated 

Are Parameters Significant 

Modify Model 

Plot time series data 
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The test statistic is:  

𝑄𝐿.𝐵 = 𝑛(𝑛 + 2) ∑
𝜌̂2

𝑘

𝑛−𝑘

ℎ
𝑘=1  ~𝑥2(ℎ)……………………………………………………………. (3) 

 

Where, 𝜌̂2
𝑘

=Autocorrelation at lag k., n = Sample size., h = Number of time lags includes in the 

test. 

 

Forecasting 

Forecasting is the final and most crucial stage of time-series analysis, aimed at predicting future 

values based on historical data. This process is only possible if the initial model passes all 

diagnostic tests, such as autocorrelation and partial autocorrelation functions. If the model fails, it 

must be refined, and the process is repeated until a suitable model is obtained. Once an adequate 

ARIMA model is established, forecasting future values Zn+1, Zn+2,…Z relies on using historical 

data Z1, Z2,…, Zn. Statistical inference for future values requires the conditional probability 

density function based on past observations, termed the predictive distribution. The best forecast 

point is the conditional expectation, which minimizes the mean square error and ensures the 

smallest possible variance. An optimal forecast uses the correct model to achieve minimal errors, 

enabling accurate predictions of future values for the time series. If we symbolize the present value 

of the time series as 𝑍𝑡 And we want to forecast the value of the time series in period (t + L), and 

we suppose that. 𝑍̂𝑡 This value will be represented at the time (t), we can obtain the forecasting by 

taking the conditional expected at the time of the original (t) of the model and after writing it when 

the period (t+ L), i.e. 𝐸𝑡(𝑍𝑡+𝐿  𝑍𝑡 , 𝑍𝑡−1, 𝑍𝑡−2, … ⁄ ) By using the conditional expected we will get 

the forecasting 𝑍̂𝑡(𝐿)  With Mean Square Error Forecasting (MSEF), the least can be possible. The 

calculation of the forecasting is possible after a few steps (L) according to the formula:    

 𝑍̂𝑡+𝐿 = 𝐸𝑡(𝑍𝑡+𝐿  𝑍𝑡, 𝑍𝑡−1, 𝑍𝑡−2, … ⁄ )      for L≥ 1………… ……………………………………  (4) 

 

Auto regression model AR (p) 

It is possible to calculate the forecasting after steps (L) according to the formula: 

𝐸(𝑍𝑡+𝜏) = 𝜙1𝐸(𝑍𝑡+𝐿−1) + 𝜙2𝐸(𝑍𝑡+𝐿−2) + ⋯ + 𝜙𝑝+𝑑𝐸(𝑍𝑡+𝐿−𝑝−𝑑)       L≥ 1    

And the best formula for forecasting model AR(p) after a few steps (L) is: 

𝑍̂𝑡+𝐿 = 𝜙1
𝐿𝑍𝑡+𝐿−1 + 𝜙2

𝐿𝑍𝑡+𝐿−2 + ⋯ + 𝜙𝑝
𝐿𝐸(𝑍𝑡+𝐿−𝑝)   L≥ 1 …………………………………(5) 

 

Moving Average Model MA (q) 

It is possible to calculate the forecasting after steps (L) according to the formula: 

𝐸(𝑍𝑡+𝜏) = 𝜀𝑡+𝐿 − 𝜃1𝐸(1𝜀𝑡+𝜏−1) − 𝜃2𝐸(𝜀𝑡+𝜏−2) − ⋯ − 𝜃𝑞𝐸(𝜀𝑡+𝜏−𝑞)      L≥ 1    

And the best formula for forecasting model MA(q) after a few steps of (L) is: 

𝑍̂𝑡+𝐿 =  𝜀𝑡+𝐿 − 𝜃1
𝐿𝜀𝑡+𝐿−1 − 𝜃2

𝐿𝜀𝑡+𝐿−2 − ⋯ − 𝜃𝑞
𝐿𝜀𝑡+𝐿−𝑞           L≥ 1………………………….(6) 

 

Mixed Models ARIMA (p,d,q) 

The best formula for forecasting model ARIMA (p,d,q) after a few steps of (L) is: 

𝐸(𝑍𝑡+𝐿) = 𝑍̂𝐿 = 𝜙1𝐸(𝑍𝑡+𝐿−1) + 𝜙2𝐸(𝑍𝑡+𝐿−2) + ⋯ + 𝜙𝑝+𝑑𝐸(𝑍𝑡+𝐿−𝑝−𝑑) − 𝜃1𝐸(1𝜀𝑡+𝐿−1) −

𝜃2𝐸(𝜀𝑡+𝐿−2) − ⋯ − 𝜃𝑞𝐸(𝜀𝑡+𝐿−𝑞) + 𝐸(𝜀𝑡+𝐿)             L≥ 1…………………………………….. (7) 
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Result and Discussion 
The study analyzes the time series of monthly mean rainfall in District Dir (L) using various 

ARMA models. The dataset consists of 113 monthly observations from January 1, 2013, to May 

31, 2022. The goal is to identify the appropriate ARMA (p, q) model for the data and estimate its 

parameters. After selecting the model, its efficiency is evaluated using different tests. The chosen 

ARMA model is then used for forecasting. The analysis is conducted using the statistical software 

EViews 12 to generate the results. 

 

Study of the Series Stationary  

At this stage the time series for original data is drawn to know initially about some characteristics 

of this series, the following graph represents: 
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Study of the series of stationary 

At this stage, the time series for original data is drawn to know initially about some 

characteristics of this series, the following graph represents that, 

 

Figure 2: Graphical representation of the series monthly mean rainfall 

 
 

Through figure 2 of the monthly mean rainfall series, we see that the series spread randomly, and 

therefore, this graphical presentation gives us no answers as to whether the series is stationary or 

not. So, we draw the autocorrelation function (ACF), and the partial autocorrelation function 

(PACF) of data and draw the confidence interval of (ACF) and (PACF) to detect the stationary or 
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non-stationary time series, as well as the use of the Ljung Box test (Q test) to ensure stationary of 

the series, as in the following table: 

Figure 3: Stationary of the series 

 
 

Through table (2) of the original series of Correlation Coefficients and figures of ACF and PACF, 

we note that there is stationary in the data of the series and most of the values within the confidence 

interval, and that the Significant value of autocorrelation coefficients by using the Ljung – Box 

test was: 

Q = 29.688 < 𝑥2
25,0.05 = 37.652 

 

Table 1: ADF test results for the original series (Monthly mean rainfall) 

ADF – Test T -Statistic Critical Values 5% Prob. 

With constant −9.557766 −2.887425 0.0000 

With constant trend −10.98563 −3.450436 0.0000 

 

Date: 07/22/22   Time: 23:31

Sample: 2013M01 2022M05

Included observations: 113

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.094 0.094 1.0177 0.313

2 -0.022 -0.031 1.0753 0.584

3 -0.038 -0.033 1.2426 0.743

4 0.171 0.179 4.7256 0.317

5 0.133 0.101 6.8433 0.233

6 0.083 0.072 7.6885 0.262

7 0.060 0.071 8.1336 0.321

8 0.037 0.013 8.3036 0.404

9 -0.025 -0.061 8.3805 0.496

10 0.076 0.055 9.1145 0.521

11 0.211 0.174 14.776 0.193

12 0.118 0.069 16.567 0.167

13 0.063 0.076 17.086 0.195

14 0.124 0.140 19.110 0.161

15 0.089 0.022 20.156 0.166

16 0.153 0.105 23.306 0.106

17 -0.020 -0.082 23.357 0.138

18 0.140 0.090 26.048 0.099

19 -0.009 -0.078 26.058 0.129

20 0.041 -0.003 26.291 0.156

21 0.024 -0.004 26.371 0.193

22 0.074 -0.011 27.163 0.205

23 0.111 0.083 28.943 0.182

24 0.055 0.004 29.382 0.206

25 0.045 0.005 29.688 0.236
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Through the data of the table (4.3) we conclude. The Statistical values calculated for the Dickey-

Fuller test in the case (with constant), and (with constant and trend) are less than the corresponding 

table value. i.e., we reject the hypothesis of a unit root. The p-value is also highly significant. The 

results of this test indicate the stationary of the series. 

 

Table 2: Compared to a set of values of AIC, SIC, SIGMASQ 

Models AR MA SIGMASQ AIC SC 

ARMA (4,4) 4 4 30.469 6.330 6.426 

ARMA (2,2) 2 2 30.474 6.330 6.427 

ARMA (1,4) 1 4 30.922 6.341 6.437 

ARMA (3,4) 3 4 31.003 6.344 6.440 

ARMA (3,1) 3 1 31.745 6.366 6.463 

ARMA (3,3) 3 3 31.737 6.367 6.464 

ARMA (1,2) 1 2 31.833 6.369 6.465 

ARMA (2,3) 2 3 32.089 6.377 6.473 

 

From the table 2, the minimum values for SIGMASQ, AIC and SC are given under the model 

ARMA (4,4). Thus, the ARMA (4,4) is the most suitable model for the monthly mean rainfall. 

 

Figure 4: All the roots for MA and AR process are inside the unit circle so the ARMA (4,4) 

process is stationary and invertible 
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Figure 5: Forecasting Stage 

 

 

Figure 6: The mean monthly rainfall forecasting results for district Dir(L), it has been 

according to the model ARMA (4,4) over the period (June 2022 – May2028) 

 

 

Figure 7: Actual and forecasted values 
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Table 3: Forecast the mean monthly rainfall (mm) 

     Point  Forecast       Point  Forecast       Point  Forecast       Point  Forecast  

Jun-22 

Jul-22 

Aug-22 

Sep-22 

Oct-22 

Nov-22 

Dec-22 

Jan-23 

Feb-23 

Mar-23 

Apr-23 

May-

23 

 Jun-23 

Jul-23 

Aug-23 

 Sep-23 

 Oct-23 

Nov-23 

 
  

9.396 

9.699 

8.557 

9.476 

9.553 

9.794 

8.818 

9.600 

9.648 

9.878 

9.025 

9.708 

9.750 

9.950 

9.207 

9.802 

9.839 

10.014 
 

Dec-23 

Jan-24 

Feb-24 

Mar-24 

Apr-24 

May-24 

Jun-24 

Jul-24 

Aug-24 

Sep-24 

Oct-24 

Nov-24 

Dec-24 

Jan-25 

Feb-25 

Mar-25 

Apr-25 

May-25 
 

9.366 

9.885 

9.916 

10.069 

9.504 

9.556 

9.984 

10.117 

9.624 

10.019 

10.043 

10.159 

9.729 

10.074 

10.095 

10.196 

9.821 

10.121 
 

Jun-25 

Jul-25 

Aug-25 

Sep-25 

Oct-25 

Nov-25 

Dec-25 

Jan-26 

Feb-26 

Mar-26 

Apr-26 

May-

26 

Jun-26 

Jul-26 

Aug-26 

Sep-26 

Oct-26 

Nov-26 
 

10.140 

10.228 

9.901 

10.163 

10.179 

10.256 

9.971 

10.199 

10.213 

10.280 

10.031 

10.230 

10.243 

10.301 

10.084 

10.258 

10.269 

10.320 
 

Dec-26 

Jan-27 

Feb-27 

Mar-27 

Apr-27 

May-27 

Jun-27 

Jul-27 

Aug-27 

Sep-27 

Oct-27 

Nov-27 

Dec-27 

Jan-28 

Feb-28 

Mar-28 

Apr-28 

May-28 
 

10.131 

10.282 

10.291 

10.336 

10.171 

10.303 

10.331 

10.35 

10.206 

10.321 

10.328 

10.362 

10.237 

10.337 

10.343 

10.373 

10.263 

10.351 
 

 

Results and Discussion 
It is concluded that the most suitable model for the analysis of monthly mean rainfall in district 

Dir(L) is ARMA (4,4). We have found that the most suitable time series model is ARMA (4,4) 

because this model has lower SIGMASQ, AIC, and SC as compared to other fitted time series 

models. The tests of diagnosis for residuals series for the model ARIMA (4,4) are independent and 

random. All the roots for the MA and AR process are inside the unit circle so the ARMA (4,4) 

process is stationary and invertible. The forecasts were constant for the last five months of the 

mean monthly rainfall series (using the Chow test), which means that the forecasts after May 2022 

will be accurate. The forecasted mean monthly rainfall for district Dir(L) using the above-

mentioned model for the next seventy-two months is shown in figure (4.14). The forecasting is 

based on sound statistical methods, so it is adequate forecasting. 

 

Conclusion  
This study focused on forecasting mean monthly rainfall in District Dir (L) using time series 

analysis. The analysis revealed that the raw data series of mean monthly rainfall was stationary, as 

confirmed by ACF and PACF plots and the Ljung-Box test (Q = 29.688, which is less than the 

critical value of 37.652). The Dickey-Fuller test further validated the absence of a unit root in the 

series, ensuring its stationarity. The ARMA (4,4) model was identified as the most appropriate for 

forecasting the series, with statistically significant coefficients (p < 0.05) as determined by the T-

student and F-statistics. The model's parameters were estimated using the least squares method, 

and model adequacy was confirmed through various criteria such as SIGMASQ, AIC, and SC 
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values. Residual analysis indicated that the model's residuals were white noise, further validating 

the model's reliability. After model diagnostics and efficiency tests, the ARMA (4,4) model was 

selected for forecasting. The forecast for the period June 2022 to May 2028 was generated using 

this model, with expected high accuracy for future predictions. 
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