Entropy as a Measure of Risk or a Source of Information to Mitigate Risk: A Comparison Across Various Financial Assets

Abdul Jalil Khan¹, Abdul Wadood Khan² and Hafiz Rizwan Ahmad³

https://doi.org/10.62345/jads.2024.13.2.151

Abstract

Since the application of entropy in financial economics has been growing extensively as a measure of volatility, in portfolio selection and to detect anomalies in markets. It's really complicated to establish that increase in entropy is a source of the useful information for the financial markets that tantamount to mitigate risk, or it is in fact an indicator of disorder reflecting the growing risk scenario in the financial market. To explore the more effective application of entropy in the field of financial economics, this study evaluates entropy in both contexts, as a source of information to mitigate risk and as an indicator of disorder reflecting volatility. Twelve years daily data of 29 financial assets have been used to measure the intrinsic entropy in addition to other eight volatility estimators and three GARCH models-based volatilities. Various assessment techniques are used to test the role of entropy in both contexts including, Run Test, Mean, Variance and Coefficients of Variation, Mean Squared Errors, Proportional Bias and Efficiency Estimator, in addition to spearman rank-order correlation. Results emphasis that entropy is more suitable as a volatility measure rather a source of information in the financial market.

Keywords: Financial Markets, Information Entropy, Volatility Estimators, GARCH Models.

Introduction

Volatility in financial assets reflects the level of risk that needs to be mitigated for a potential investment opportunity. Low volatility in any financial assets with potentially high returns would be the most desirable strategy for an investor. However, there are various techniques to calculate volatility and there is a possibility that variation in the measured volatility may exist for a given asset due to the capability of an estimator to capture the dynamic behavior of a given series. Measurement of volatility in financial assets is always considered a core concern for all financial institutions, consultants, and investors to assess the magnitude of risk in financial assets. Although the ARCH/GARCH models have been developed to measure the volatility, but their credibility became doubtful after the financial crises of 2008/9. It necessitates to explore other possible volatility measures because given measures may not effectively serve the purpose. Consequently,

³Assistant Professor, Department of Economics, Forman Christian College (A Chartered University), Lahore. Email: <u>rizwanahmad@fccollege.edu.pk</u>

Copyright: © This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Compliance with ethical standards: There are no conflicts of interest (financial or non-financial). This study did not receive any funding.

¹Assistant Professor, Department of Economics, Forman Christian College (A Chartered University), Lahore. Email: <u>abduljalilkhan@fccollege.edu.pk</u>

²Alumnus Lahore University of Management Sciences (LUMS) and Working as Software Engineer in Richmond, Canada. Email: <u>abdul.wadood@gmail.com</u>

this study has been inspired by (Vinte et al., 2021) who have considered the intrinsic entropy as an effective tool to measure volatility.

Since entropy is also considered as a measure of 'information content' of the given message that may reduce uncertainty and risk factor in the financial markets, it may be expected that with increased entropy volatility should be mitigated. While volatility is referred as a 'measure of risk', consequently once a new information receives in the financial market where financial assets are already very sensitive to information, this will at least reduce the overall uncertainty about the potential returns. However, the problem is that the '*information*' content of a 'news' component may also cause high 'uncertainty' if such 'news' delivers that information undergoing some element of chaos. Consequently, there is need to test the hypothesis such as more the information a message conveys, the less volatile the market would be. If this hypothesis doesn't stand, it will imply that information content by itself does not warranty the reduction in uncertainty but its impact on the market will determine its nature, which may be observed through the pace of returns, lower volatility levels, or increased market efficiency.

Now the question is how 'entropy' is relevant in this regard? Since Rudolf Clausius has introduced the concept of entropy in early 1850s based on thermodynamics process by observing some of the functional energy loss that cannot be converted into useful work, so named it '*entropy*'. Later in 1948, Claude Shannon has quantified the amount of 'lost information' in phone line signals and named it as 'information entropy' (Nanda & Chowdhury, 2019) Although the concept information couldn't be quantified properly before the introduction of Claud Elwood Shannon entropy measure (Yin, 2019). Who has depicted the relationship between information redundancy and the probability through a mathematical framework. Shannon has described the entropy as tool to measure information, uncertainty and choice (Olbry's & Ostrowski, 2021) as it may extract the information content through probability distribution of data belongs to any complex system. It has been observed while conducting studies on thermodynamics that the economic system seems not only 'mechanism' like in physics but instead follows a thermodynamic behavior as well. Since capturing the recent economic phenomenon through 'mechanism' devised by both Keynesian and the Monetarists remained ineffective due to the skipped entropy factors that hold strong influence over equilibrium and economic change just like they do in thermodynamics (Jaynes, 1991).

The objective of this study is to evaluate whether emerging techniques of measuring information through entropy are either more successful in minimizing the risk (volatility) for financial assets or reflecting such risk more effectively due their endowed property of disorder. The information related to prices, trade volume and daily returns of six sets of financial assets have been analyzed to prove this proposition that includes, stock-exchanges, company stocks, physical currencies, crypto-assets, commodity indices, and bond markets.

The main entropy measures consulted in this study is Shannon Entropy, however, it doesn't incorporate trade volumes which is one of the relevant factors to determine the equilibrium prices of any product as per demand theory in the field of economics. Therefore, intrinsic entropy has been considered a more appropriate measure because it incorporates the trade volume in addition to prices, provides a more reflective measure of entropy with respect to economic theory. In the same chain of argument intrinsic entropy-based volatility measures may prove more effective to estimate the magnitude of risk in the financial assets as well because no doubt trading in financial markets is influenced by the determinants of 'consumer behavior' together with 'risk behavior'. Further most of the studies have assumed that (Shannon) entropy based on information theory is another way to capture the volatility (Ghosh & Nisha, 2018).

In a nutshell, this study aims to evaluate the effectiveness of the intrinsic entropy model by comparing it with other standard volatility measures. Since the flow of news is a continuous process that delivers the information in the financial markets. To determine whether a particular news is relevant either to the few stocks or entire stock market or some other financial assets, first the information content needs to be 'captured and calculated' afterwards its relationship with financial assets can be estimated. Hence the concept of 'Entropy' based on information theory has been applied in this study to capture the 'information' content of a given 'news' item, which is truly borrowed from the field of thermodynamics in physics and effectively be used by various machine learning research to quantify information. Cumulative entropy is considered more relevant because information has historical context and pieces of information accumulate to create knowledge that can be used productively for an effective decision making.

Literature Review

As literature review reveals that entropy has become extensively focused area for research especially in the field of financial markets where variety of entropy measures have not only been applied but even originated into some new forms and evolved to grasp the more complex and highly turbulent behaviors.

In a working paper (Backus, 2011) entropy is applied on asset pricing model considering time dependance, where enormous amount of entropy is found as an outcome of disasters and jumps. However, there is a tradeoff found between a 'rise in entropy' due to recursive preferences and habits of a representative agent, and the 'rise in time dependence', because entropy varies over different time horizons. The main challenge they have identified is how to make sure that enough entropy is generated without excessive time dependence. The volatility during the financial crises of 2008-9 has been evaluated by (Ghosh & Nisha, 2018) based on GARCH (1,1) and entropy measure by using data in two time frames: 2007-11 and 2012-16, to assess the capability of Shannon's entropy as an econophysics tool to capture the volatility of these targeted time frames. GARCH method shows higher volatility in first period whereas a relatively more volatility in second period has been predicted by entropy method. A study (Datta, 2023) has focused on the measurement of volatility for oil price returns by applying sample entropy to compare it with simple standard deviation. It provides evidence that sample entropy proved to be more efficient especially during financial crises, having potential to work as an effective 'risk assessment tool'. In the dissertation, (Stosic, 2016) has mentioned the new term 'econophysics' by referring interaction of statistical tools by the physicists and computer scientists on the economics and financial phenomenon, such as price fluctuations, risk and portfolio management. Entropy is one of the most prominent tools of econophysics that helps to quantify the uncertainty and disorder usually present in the prices movements across a variety of financial assets. Hence it has been applied in the foreign exchange market mainly to capture the impact of financial crises. In their paper (Stosic, Stosic, Ludermir, Oliveirab, & Stosicb, 2016) based on block entropy the authors prove that exchange rate entropy increases with financial crises. Entropy has also been employed to develop portfolios to achieve high optimization that has performed better than expectationvariance-models in selection of portfolios (Yin, 2019). Considering one of the three main dimensions of market liquidity including resiliency, tightness and depth, the market depth has been gauged through an entropy-based estimator where Shannon information entropy provides a new indicator as one of the liquidity dimensions in the stock market. The evidence suggested that Entropy-based-Market-Depth indicator has advantage to measure the liquidity consistent with the intuition of investor regarding its highest and lowest values within possible range from '0' to '1'

(Olbry's & Ostrowski, 2021). Another study conducted by Kralingen et al. (2021) evaluates market clustering to measure how much trade is performed similarly by a group of investors. They consider the price adjustments is the investors' reaction to the new information in addition to the price dynamics of a given market. The maximum-entropy based model for real networks of investors, companies and stocks has been developed containing features present in real life stock markets by assuming that such clustering are not purely outcomes of random behaviors of the network nodes. In their study Liao et al. (2021) employ the structural entropy to depict monitoring and risk management in addition to the complex network of the financial system.

Whereas for evaluating the importance of bitcoin a study conducted by (Bedowska et al., 2021) has tried to measure the direction of information flow through mutual information between liquidity and the volatility across seven highest capitalization based selected cryptocurrencies. The conclusions show that cryptocurrencies have strong associations in terms of volatility and respective prices but weak in terms of liquidity. A positive information transfer from Bitcoin to Litecoin has been observed, whereas the value of Ripple remains highest in the case of transfer entropy that reflects liquidity. They have found relatively low information transfer but very high mutual information across selected cryptocurrencies. Where (Karkowska & Urjasz, 2022) have employed the mutual information and the transfer entropy to make a comparison across European Stock markets. They have observed low entropy transfer from US equity markets to European stock markets before Covid-19 crisis but higher during the crises. Another entropy technique referred as Renyi's transfer entropy measure has been considered in (Jizba & Tabachová, 2022) to establish a relationship with data driven causal inference. They have proved that in the case of Gaussian process, the Renyi's transfer entropy and Granger Causality are equivalent.

The impact of monetary policy shock on Dow John Industrial (DJI) Average has been evaluated through Von Neumann entropy and singular value decomposition entropy in (Caraiani & Lazarec, 2021) who provide the evidence that entropy declines with a positive monetary policy shock because lowering interest signaling more stability in financial market. (Olbry's & Majewska, 2022) have tested the hypothesis that during turbulence periods, there is decrease in entropy in equity market index. By failing to reject this hypothesis the study provides evidence that during turbulence, stock market index returns become more predictable and regular. Financial risk has also been measured through Shannon's entropy by (Mahmouda & Naouib, 2017) as an alternative to standard deviation because of its similar behavior and even better performance in case of non-Gaussian distribution of returns. Same with 'Sharpe Ratio' with single index-model because entropy can assess more effectively both specific and systematic risks pertained to financial asset pricing. In their study (Wang et al., 2022) have found that entropy contains more explanatory power to calculate the risk compared to the beta measure of capital asset pricing model. They have evaluated both Renvi's and Shannon entropies to conclude that they performed best to evaluate risk in stocks. So, investors become better off by adding stocks to their portfolios that belong to those enterprises offering high returns with minimum risk, measured through techniques based on entropy.

Since anomaly detection in time series helps to detect those signals which contained relatively large uncertainty because of more noise and chaotic characteristics. This purpose cannot be achieved with the application of dynamic Shannon entropy, but its improved extension 'Deng Entropy' helps to detect time series anomalies more successfully (Wang et al., 2023). A Graph Neural Network approach has been applied by (Costa, 2023) to detect possible anomalies in the global financial markets by using 'nonextensive entropy' to prove that during crisis structural complexity of highly correlated assets mitigated significantly.

The intrinsic entropy model has been introduced by (Vinte et al., 2019) that scales the investors' level of interest considering exchange-traded security. Intrinsic entropy measure without engaging any exogenous factor provides signals for decision to buy or sell a given security. Although intrinsic entropy model uses intraday trading, it is reasonably effective in case when built over through consecutive trading days if number of transactions per day on average are few.

A literature survey conducted by (Nanda & Chowdhury, 2019) has provided an extensive list of 106 studies conducted covering variety of entropy applications in the field of statistics, reliability and information sciences from 1948 to 2018 covering the maximum possible literature on entropy after (Wiener, 1948) and (Shannon, 1948) and observed that although Shannon has developed the entropy formula that have been forked into various kinds of entropy measures to accommodate the dynamic behavior of the natural modification in the set of postulates initially followed by Shannon. Many other application of the Shannon entropy has been found in the literature including to record the information related to temperature and climate change (Twarong, 2023), to measure employment diversity across and amongst industrial region (Attaran & Zwick, 1987).

Methodology

Since in recent era generalized autoregressive conditional heteroskedasticity (GARCH) model and its respective versions have become dominant to measure the volatility, however, their efficacy become questionable especially when they have found incapable to predict about potential financial crises.

This study covers these aspects regarding volatility measurement: (a) ARCH or GARCH models are still effective in capturing the volatility in prices and returns of financial assets; (b) all other volatility estimators are good measures of volatility but may not replace the GARCH models, unless proved otherwise through extensive research; (c) Volatility estimates the level of risk effectively rather than forecast it. The presence of extensive literature that either proves or disproves the forecast-abilities of ARCH (GARCH) volatility measures could not play a significant role in avoiding the financial crisis of 2008-9. Therefore, reduction in volatility may be a more desirable outcome by using the given measures whereas improved information flow (enhanced entropy) may help to curtail the level of such volatility significantly.

The main objective of this paper is to explore how entropy helps to reduce the potential risk in financial assets especially focusing on the 'returns' by considering that the expected forecast about returns through these models will be more effective to catch the trends (rather variation) when entropy is incorporated into the estimation process.

Volatility Measurement Estimators: Structural Models

These volatility estimators have been extensively discussed by (Garman & Klass, 1980), (Yang & Zhang, 2000), (Floros, 2009), (Vinte, Smeureanu, Furtuna, & Ausloos, 2019), (Vinte, Ausloos, & Furtuna, 2021). However, a brief but needed description is reproduced here because the purpose of this study is sufficiently achieved with the reported descriptions, consequently remaining details and extensions are left for other researchers if they are intended to probe it in details.

Close-to-Close (CC) Classical Volatility Estimator (CCCVE)

As it is referred to as 'standard deviation of log returns after adjusting with dividends' however dividends are considered zero here to allow its application across those types of financial assets where there are no direct dividends available.

Now let 'w' is the magnitude of daily returns $w_i = \ln(c_t/c_(t-1))$, with mean of the log returns (drift shown by eta) ' η ' the resultant volatility estimator takes opening price volatility into account:

$$CCCVE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (o_i + c_i - \eta)^2}$$

Now the issue is that if distribution of log returns is not normal, application of third moment (skewness) and fourth moment (kurtosis) will provide the better estimates of risk. Consequently, based on the distribution of sample data CCCVE may be adjusted accordingly.

Garman & Klass (GK) Volatility Estimator (GKVE)

The more suitable structural model for volatility measurement is referred by (Garman & Klass, 1980) where the estimation procedure for regularly reported public data about financial assets usually covering historical series daily prices including only opening, closing, high and low values. Financial assets follow this diffusion process with 'P(t)' as daily price, 'D(t)' as diffusion process by considering $dD = \sigma dz$ as its differential representation 'dz' is assumed to be a standard Gauss-Wiener Process with ' σ ' which is unknow constant that needs to be estimated (Garman & Klass, 1980, p. 68) :

$$P(t) = \Omega(D(t)) \dots \dots \dots (i)$$

However, price series are transformed into logarithmic formation for each cryptocurrency series where $D = \Omega^{-1}P$, the volatility is reflected by the 'variance of the logarithm of the original prices'. Hence parameter σ^2 as an estimator of the variance of D(t) is mainly focused. The model has been applied with all due limitations as mentioned by (Garman & Klass, 1980, p. 68). The variance of the volatility as a fourth moment has been considered based on equation (ii) and (iii) but efficiency of $\hat{\sigma}_1^2$ has been found at least 50% larger than $\sigma_0^2 \sim 0^2$. Now model formation follows as: $\hat{\sigma}_0^2 = C_1 - C_0 \dots \dots \dots (ii)$

$$\hat{\sigma}_{1}^{2} = \frac{(O_{1} - C_{0})^{2}}{2f} + \frac{(C_{1} - O_{1})^{2}}{2(1 - f)} \dots \dots \dots (iii)$$

subject to $0 < f < 1$

Since low and high prices are major reflections of the volatile behavior, that has been adjusted in equation (iii) by Parkinson (1976) provided in (Garman & Klass, 1980, p. 71), assuming $(H_1 - L_1)^2/4\ln 2 = (u - d)^2/4\ln 2$

$$\hat{\sigma}_1^2 = a \frac{(O_1 - C_0)^2}{f} + (1 - a) \frac{(u - d)^2}{(1 - f)4ln2} \dots \dots \dots (iv)$$

Whereas

 $\hat{\sigma}_0^2 = volatility of prices$

 $f = fraction of the day used in trading (assumed 8 working hours out of 24 hours) = \frac{8}{24}$ $C_0 = log of closing price of last working day$ $C_i = log of closing price of currecnt working day$ $O_i = log of open price of currecnt working day$ $H_i = log of highest price of currecnt working day$ $L_i = log of lowest price of currecnt working day$ $o = O_i - C_0 as a normalised opening price$ $c = C_i - O_i as a normalised closing price$

 $u = H_i - 0_i$ as a normalised high price

 $d = L_i - 0_i$ as a normalised low price

a = proportion of the volatility contributed by opening and closing price difference

1 - a = proportion of the volatility contributed by highest and lowest price difference

k = represents the weights, measured as [0.34/1.34+(n+1)/n-1)] so that k will never become exactly zero or one.

By assuming eight working hours per day, let f = 8/24 and a = 0.3 (lower weight is assigned to opening and closing price difference viz. 30% compared to highest-lowest price difference, however its floating and through hit and trial or model training the optimum value of 'a' can also be obtained). The reduced form is:

$$\text{GKVE} = \sqrt{1/n \, \sum_{i=1}^{n} [1/2(u_i - d_i)^2 - (2ln2 - 1)c^2]}$$

Parkinson Volatility Estimator (PVE)

PVE considers only extreme prices are relevant such a low and high price in a day probably overestimate the volatility:

$$PVE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{4 \ln 2}\right) (u_i - d_i)^2}$$

Rogers-Satchell Volatility Estimator (RSVE)

RSVE includes drift (average trend with all four range of prices)

$$\text{RSVE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} [u_i(u_i - c_i) + d_i (d_i - c_i)]}$$

Yang & Zhang Volatility Estimator (YZVE)

YZVE establishes that a multiple period-based estimator may consider both opening price jumps and drift-independence to get an unbiased variance estimator:

 $YZVE = \sqrt{1/n\sum_{i=1}^{n} (o_i - 1/n\sum_{i=1}^{n} o_i)^2 + 1/n\sum_{i=1}^{n} (c_i - 1/n\sum_{i=1}^{n} c_i)^2 + [1 - k] * RSVE}$

Volatility Measurement: ARCH/GARCH (1,1) and GJR-GARCH Models

Autoregressive Conditional Heteroskedasticity ARCH(T) some weights are assigned to the long run variance. Let V_L as long-term volatility, R_t as current returns, and σ_T^2 as current estimates of volatility, the ARCH (p,q) will become:

$$\sigma_t^2 = \delta V_L + \sum_{t=1}^T \theta_t R_t^2 \dots \dots (v) \qquad Where, \delta + \sum_{t=1}^T \theta_t = 1$$

and in Generalized Autoregressive Conditional Heteroskedasticity [GARCH (p, q)] model, previous variance estimates will have some additional weights to capture the volatility clustering phenomena i.e., periods of high volatility cause high volatility and vice versa.

$$\sigma_{t}^{2} = \varphi + \sum_{i=1}^{p} \theta_{i} R_{t-i}^{2} + \sum_{j=1}^{q} \beta_{j} \sigma_{t-j}^{2} \dots \dots \dots (vi) \qquad Where, \varphi = \delta V_{L}$$

To consider the time-varying component of volatility, the asymmetrical effect of shocks needs to be considered as well because especially in case of financial returns, the impact of negative shock is more relevant and perhaps one of the main factors behind excessive risk. Consequently, Golsten-Jagannathan-Runkle (GJR)-GARCH model has also been used to estimate volatility. Since Exponential (EGARCH) model has ability to capture the asymmetric (leverage) effects in financial returns and volatility clustering so it is also considered.

Shannon (Intrinsic) Entropy Measurement:

The comprehensive literature survey by (Nanda & Chowdhury, 2019) has provided a very brief perspective regarding the derivation of Shannon's Entropy. A detailed introduction and the mathematical derivation primarily established by (Shannon, 1948) in his article 'A Mathematical Theory of Communication' may further be consulted for detals. Shannon has successfully linked the economic concept 'choices' with uncertainty through a statistical concept of 'probability' by injecting the concept of 'information' which is further leading towards the evolution of a new field of study called, 'information sciences'. The intrinsic volatility formula accommodates the volume of trading in addition to the returns of the financial assets. According to (Claudiu Vint, Smeureanu, Furtuna, & Ausloos, 2019) and (Vinte, Ausloos, & Furtuna, 2021), The Shannon entropy formula has been phrased as:

$$H_t^S = -\sum_{n=1}^N (\frac{P_n}{P_{n-1}} - 1) \frac{q_n}{Q_t} ln_2 (\frac{q_n}{Q_t}) \dots \dots (vii)$$

whereas.

 H_t^S – shows intrinsic Shannon entropy for a given financial asset S in a sampled period t,

N – total number of trades executed in current trading session within a day for S financial asset,

q_n - trade volume, i.e., number of shares of trade n for symbol S

 Q_t - total traded volume for sampled period of symbol S, measured by summation of q_k trade volume for sampled period t, consequently satisfying this condition: $\sum_{n=1}^{t} \frac{q_n}{Q_t} = 1$

 P_n –adjusted closing current prices of trade n for symbol S In equation (vi), the fraction of traded quantities ($\frac{q_n}{q_t}$) has been proxied as the probabilities for various financial assets with $\left(\frac{P_n}{P_{n-1}}-1\right)$ weights assigned to such probabilities by assuming that returns are the main reason for trading and proportion of trading needs to be adjusted with it. When returns are higher 'biding' sets in while 'asking' follows the decline in returns. The entropy values have been calculated through histogram-based density estimation function as these techniques has some support from literature as well, such as (Wang et al., 2022).

Evaluation Techniques: Run Test

There are variety of techniques to measure the randomness in the returns of various financial assets. The 'Run-Test' as a linear statistical technique is applied to measure the level of randomness in each series and to test the efficient market hypothesis with mean, standard deviation and coefficient of variations. Since the run test has been considered one of the most relevant tests to measure the weak-from efficiency in the stock market (Aumeboonsuke & Dryver, 2014). This test captures the same characteristics across a series through uninterrupted sequence of a given length, effectively applicable on a binomial variable (Herger, 2024) Herger has further evaluated the statistical distribution of run test by using various probabilities. This study has calculated the 'direction' of returns i.e., increasing (+1 or 1) and decreasing (-1 or 0) as a binomial variable to measure the randomness of the series. However, the run test also helps to assess whether a given financial asset has weak form efficient or otherwise (Elbarghouthi et al., 2012).

Evaluation Techniques: Mean Squared Errors, Proportional Bias & Efficiency Estimator

The ranking of volatility estimators and other measure is performed based on Mean Squared Error (MSE) which is a standardized tool for comparison; Proportional Bias (PB) that identifies the comparative suitability and relatively better performance of one technique over the other; and

Efficiency Estimator (EE) which identifies that a specific technique is more (less) efficient than the other one. These techniques have successfully applied by Vinte et al. (2021) which is one of the core studies that has inspired the present study.

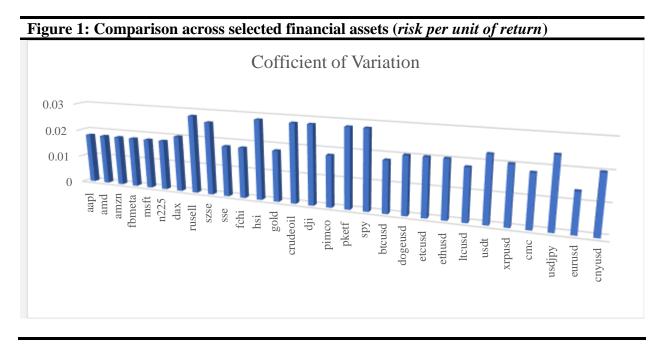
Evaluation Techniques: Spearman Rank-Order Correlation

Since financial data is full of nonlinearities and sometime with outliers as well, the application of spearman rank order correlation has potential to provide robust outcome in the presence of such nonlinearities and outliers.

Sampling and Data Specification

There are a variety of financial assets where investors may choose a bunch to make an efficient portfolio. A variety of stock indices have become attractive due to high risk in a single financial asset. New types of businesses and companies have emerged as well. In addition, investment in cryptocurrencies is becoming the most attractive option for experienced investors generally but for immature young people especially. Consequently, in this study to evaluate the levels of profits, risks, and the nature of instabilities amongst the prices of various financial assets, most of the dimensions of these assets have been addressed by selecting twenty-nine assets. The sample consists of six major dimensions of these assets including:

- i. *Stocks Exchanges*: NASDAQ; NIKKEI225; Shenzhen (SZ399001); Shanghai (SS000001); Performance index (DAX); CAC40 French Index (FCHI); Hand Seng Index (HSI); and Chicago (Rusell2000).
- ii. *Commodity Indices*: DJI: Crude Oil; and Gold.
- iii. Crypto-Assets (cryptocurrencies): USDT as stable coin and DOGE, based on stability; Ripple (XRP), Ethereum Classic (ETC), Litecoin (LTC), Ethereum (ETH), Bitcoin (BTC) with long history of existence and CMC200 (Crypto Exchange). The cryptocurrencies selected for evaluation here are chosen on the basis of two criteria: (i) market capitalization (ii) long run sustainability (in years) of such currencies.
- iv. *Bonds Market*: Global X MSCI Pakistan Exchange Traded Fund (PAK); SPDR S&P500 ETF Trust (SPY); PIMCO Active Bond ETF (BOND).
- v. *Individual Stocks* of international companies: Apple (AAPL); Advance Micro Devices (AMD); Facebook (META); Microsoft (MSFT) and Amazon (AMZN)
- vi. *Physical Currencies*: Exchange rates US dollar per Euro (USD_EUR); per British Pound (USD_GBP); Chinese Yuan per US dollar (CHY_USD) and US dollar per Japanese Yen (USD_JPY)


The main source of data collection is yahoo finance. The data with 'daily' frequency ranges from last five to 15 years or even more in some cases. Mostly the data period covers recent values up to July 2024 however till July 2023 in few cases due to non-availability of a latest series. : NASDAQ have to drop due data limitation as many values are 'null' in their series.

Results, Analysis and Discussion

Initially, returns are measured for all 29 financial assets which are further categorized into six main groups to observe how these types of financial instruments behave especially in the context of entropy and volatility. The purpose of categorization of these financial assets is to observe how entropy and volatility affect different segments of financial markets.

The strategy followed to measure the entropy is based on (Vinte, Ausloos, & Furtuna, 2021) where intrinsic entropy measurement has been calculated by using not only the closing prices, but the volume traded as well. The intrinsic entropy measure may be considered as an improved version

of Shannon entropy. Since there is no unique way found to evaluate the impact of entropy on financial returns, consequently different strategies have been employed to capture the association and to measure the impact of entropy on stock returns and their respective volatilities in terms of two hypotheses.

As in figure 01, the proportionally large risk is found in case of stock exchanges like Rusell, Shenzhen, and Hang Seng; commodities like crude oil and Dow Johns; Bonds including Pakistan ETF and S&P500 ETF Trust; however marginally in case of USTD crypto asset and physical currency like USD-JPY respectively. All other assets risk is justifiable with their respective mean returns.

The figure 02, shows the how all these financial assets are correlated with various volatility measures and estimators. Although a consistent pattern is found in terms of nature of correlation across all 29 assets for most of the volatility indicators except when volatility measure is based on third moment (skewness) and fourth moment (Kurtosis). Especially in case of skewness-based volatility, very high and negative correlation in most of the cases has been observed. Generally, a significant but relatively high negative correlation is found with volatility in case of LTC_USD, Gold, BTC_USD and Shenzhen. This means the returns in these assets increases with reduction in volatility or vice versa.

There are two situations formulated into respective hypotheses: First, refers that entropy measures the disorder in the field of physics and the financial data is generated through the physical activity of trading hence entropy is considered as a source of disorder measured through randomness in the field of finance. Second, it is assumed that 'entropy' in information theory, which is measurable through probability, is playing vital role in the field of finance due to the information contents of a message generated by some economic or financial variable or even caused by some random variable, when the amount of information inside such message arrives in financial markets, it should mitigate the potential 'risk'. The reason is that any new information content is considered as 'news' in the financial market that will either lead to make such market bullish or bearish depending on the way such 'news' item is perceived. Consequently, entropy helps to collect the

pieces of information that accumulates and become source of knowledge for effective decision making and leads to lower down the potential magnitude of 'risk'.

			H ₀ :Data i	ons of run test s Random as Pattern			Veak form Efficient Aarket Hypothesis
	MEA	N STD	CV	Z-SCORE	RT_SERIES (5% sig. level)	Compara Entropy Ranks	* -
aapl	1523.099	27.56086	0.018095	1.084906	Pattern	10	Prob. Abnormal Returns
amd	1525.496	27.60427	0.018095	1.793349*	Pattern	16	Prob. Abnormal Returns
amzn	1522.24	27.54529	0.018095	-0.33544	Pattern	8	Prob. Abnormal Returns
fbmeta	1527.25	27.59083	0.018066	2.020584**	Randomness	20	Market is Efficient
msft	1522.01	27.53662	0.018092	2.396427**	Randomness	1	Market is Efficient
n225	1518.199	27.4721	0.018095	0.939168	Pattern	12	Prob. Abnormal Returns
dax	1220.88	24.68563	0.02022	2.192353**	Randomness	3	Market is Efficient
rusell	629.0064	17.69907	0.028138	1.129644	Pattern	6	Prob. Abnormal Returns
szse	726.1247	19.02957	0.026207	0.256194	Pattern	14	Prob. Abnormal Returns
sse	1523.144	27.55714	0.018092	1.700336*	Pattern	19	Prob. Abnormal Returns
fchi	1520.329	27.50616	0.018092	1.696764*	Pattern	25	Prob. Abnormal Returns
hsi	617.3536	17.54575	0.028421	-0.13414	Pattern	5	Prob. Abnormal Returns
gold	1525.138	27.59778	0.018095	1.879218*	Pattern	4	Prob. Abnormal Returns
crudeoil	625.1908	17.59145	0.028138	0.728151	Pattern	22	Prob. Abnormal Returns
dji	627.1955	17.64799	0.028138	0.838875	Pattern	13	Prob. Abnormal Returns
pimco	1524.142	27.57975	0.018095	-0.18644	Pattern	17	Prob. Abnormal Returns
pketf	625.3641	17.59633	0.028138	0.49078	Pattern	2	Prob. Abnormal Returns
spy	624.6518	17.57624	0.028138	0.531864	Pattern	9	Prob. Abnormal Returns
btcusd	1518.569	27.48331	0.018098	2.962929**	Randomness	15	Market is Efficient
dogeusd	1217.923	24.6561	0.020244	3.775001**	Randomness	24	Market is Efficient
etcusd	1218.327	24.66429	0.020244	3.554641**	Randomness	23	Market is Efficient
ethusd	1217.879	24.6552	0.020244	3.776937**	Randomness	7	Market is Efficient
ltcusd	1525.976	27.60845	0.018092	3.40561**	Randomness	26	Market is Efficient
usdt	270.5621	6.174322	0.02282	0.070922	Pattern	18	Prob. Abnormal Returns
xrpusd	1073.482	21.72391	0.020237	2.647685**	Randomness	21	Market is Efficient
cmc	1525.48	27.60399	0.018095	0.924498	Pattern	11	Probable Ab. Returns
usdjpy	847.7645	20.51286	0.024196	1.961475**	Randomness	28	Market is Efficient
eurusd	1926.337	26.24968	0.013627	5.320549**	Randomness	27	Market is Efficient
cnyusd	1245.281	24.93554	0.020024	1.753271*	Pattern	29	Prob. Abnormal Returns
Note:	More random	nness should	reflect higher		ing shows otherwise.		

H1: entropy is a source of randomness

First, 'run test' has been applied to identify whether financial returns are random or not, because in case of randomness market will be considered weak efficient and potentials for abnormal returns may not be available in the specific financial asset group. The results reported in table 1, reveals that Microsoft and Facebook stocks are more efficient compared to Apple, AMD and Amazon where probability of excess return exists.


In contrast, all sampled cryptocurrencies and physical currencies have followed the randomness hypothesis of 'run test' and found weakly efficient with exception of a stable coin USDT, crypto-exchange CMC and Chinese Yuan per US dollar. The coefficient of variation is marginally higher in case of Rusell, Shenzhen, HSI, Crudeoil, DJI, PKETF and SPY reflecting higher risk per unit of returns, compared to other selected financial assets.

The *comparative entropy ranks* help to make another possible comparative analysis based on results provided in table 1, where ranking through the levels of entropy measure using intrinsic entropy approach have been reported. Considering that entropy is the measure of randomness, the assumption is that the more the entropy more the randomness, hence randomness should follow the level of entropy. Highest rank is 1 and the lowest rank is 29. Although the comparison may be crude but confirms one aspect of financial assets that in this sample, entropy ranks are not consistent with the level of randomness expressed by the run test. Most of the financial assets with significant randomness take comparatively low entropy ranks. So, the hypothesis that entropy reflects randomness becomes asset specific and cannot be applied on all sampled assets generally. Entropy ranks also convey that comparatively Microsoft (stock) , PKETF (Bond), DAX (Stock Exchange) have large number of possible return outcomes, but physical currencies have very small number of such possibilities. To probe this hypothesis further, future studies may apply other measures of randomness such as spectral analysis or surrogate data analysis.

H2: accumulated entropy is a source of information to mitigate risk

The results mentioned in figure 2 show the spearman rank-order correlation between entropy and all volatilities measured through eight estimates and three Grach based models. The assumption here is that if entropy is measuring the volatility in financial assets then there should be positive and direct association between entropy and the corresponding volatility measure otherwise in case of inverse association it may be considered as a source of information that mitigate risk.

Only eight financial assets show strong negative correlation with accumulated entropy supporting the given hypothesis, five assets have either insignificant correlation or very few correlations with volatility measures, while fifteen assets have positive significant correlation with given volatilities. Consequently, based on majority evidence it can be declared straightforwardly that accumulated entropy is not a source of information to mitigate the risk in case of selected sample of this study. So, the hypothesis that entropy may lead to reduced risk doesn't have majority vote to prove valid. Although, it is not proved that entropy can play a role to mitigate risk as a source of information but 30% of the sampled assets validate that entropy can be helpful to mitigate risk in some asset returns. Based on the results it can be concluded that entropy is more suitable as a measure of volatility rather than a source to reduce volatility. Since the case for entropy as a volatility measure is getting more support from the hypotheses tested through various statistical tools in this study. It is imperative to make a comparison of entropy with all other volatility measurement techniques to further explore its potential role.

Legend: Blue bars reflect positve and Oring bars negative correlation respectively. Only significant corrlation is reported, at 1% and very few at 5% or 10% level of significance. In table 2, very low values of the mean and variance of entropy variables compared to all other volatility measurement techniques have been observed in the case of all the financial assets except physical currencies. However, the coefficient of variation is large reflecting more volatility than the expected returns i.e., returns may not justify the level of potential risk. In table 3, mean squared error, proportional bias and efficiency estimators values have been provided. In most cases mean squared error is minimal in the case of entropy compared to all other volatility measures with only one exception Litecoin(LTCUSD). It means entropy as measure of volatility provides more precise estimates compared to other selected volatility measures. Proportion bias is either 1 or close to 1 for all financial assets for entropy except for HSI where it is positive but excessively large, Litecoin where it is again positive and more than 2, but less than 1 for Ripple (XRPUSD) and USDT with negative sign. In comparison, entropy has proved the best measure of volatility again based on proportional bias with minimum possible bias across all assets including USDT. For HSI and LTCUSD the better measure of volatility estimates is not the intrinsic entropy but Hodges Tompkins (HT) and for XRPUSD it is Skewness-based volatility measures. Efficiency estimator has been found very high in case of entropy compared to all other volatility measures except in case of both FCHI and LTCUSD where Garman Klass (GK) perform most efficiently to measure their volatilities. However, in physical currencies entropy is not relevant because absence of volume traded couldn't allow to apply intrinsic entropy measure in these cases.

Conclusion

Since the role of entropy in the field of economics and finance pivot around mostly as a measure of volatility in returns, selection of optimized portfolios and to detect anomalies in markets. The literature emphasis on first two applications more than the third one. The main objective of this paper is to evaluate the more precise role of entropy either as an information measure that helps to minimize the riskiness of financial assets or another measure of risk (volatility) due to its intrinsic capacity that helps to measure disorder. Application of run test, variance ratio, correlation analysis along other evaluation criteria tested with two hypotheses in accordance with the objective, support intrinsic entropy as a measure of volatility with majority of evidence. Therefore, it is suggested that in future intrinsic entropy technique need to be preferred when and where volatility estimation is the major concern.

Reference

- Attaran, M., & Zwick, M. (1987). Entropy and Other Measures of Industrial Diversification. *Quarterly Journal of Business and Economics*, 26(4), 17 - 34. Retrieved from https://www.jstor.org/stable/40472898
- Aumeboonsuke, V., & Dryver, A. L. (2014). The importance of using a test of weak-form market efficiency that does not require investigating the data first. *International Review of Economics & Finance, 33*(September), 350-357. doi:https://doi.org/10.1016/j.iref.2014.02.009
- Backus, D., Chernov, M., & Zin, S. E. (2011). Sources of Entropy in Representative Agent Models. *NBER Working Paper* (17219), 1 - 54. Retrieved from http://www.nber.org/papers/w17219
- Bedowska-Sójka, B., Kliber, A., & Rutkowska, A. (2021). Is Bitcoin Still a King? Relationships between Prices, Volatility and Liquidity of Cryptocurrencies during the Pandemic. *Entropy*, 23(1386), 95 -. doi:https://doi.org/10.3390/e23111386

- Caraiani, P., & Lazarec, A. V. (2021). Using Entropy to Evaluate the Impact of Monetary Policy Shocks on Financial Networks. *Entropy*, 23(1465), 133 144. doi:https://doi.org/10.3390/e23111465
- Claudiu Vint, e., Smeureanu, I., Furtuna, T.-F., & Ausloos, M. (2019). An Intrinsic Entropy Model for Exchange-Traded Securities. *Entropy*, 21(1173), 1 19.
- Costa, K. d. (2023). Anomaly Detection in Global Financial Markets with Graph Neural Networks and Nonextensive Entropy. *Papers 2308.02914, arXiv.org*, 1-7. Retrieved from https://ideas.repec.org/p/arx/papers/2308.02914.html
- Datta, R. P. (2023). Leveraging Sample Entropy for Enhanced Volatility Measurement and Prediction in International Oil Price Returns. *Papers 2312.12788*, 1-16. Retrieved August 09, 2024, from https://arxiv.org/pdf/2312.12788
- Elbarghouthi, S., Qasim, A., & Yassin, M. (2012, February). The Use of Runs Test in Amman Stock Exchange. *International Business Research*, 5(2), 159 - 172. doi:http://dx.doi.org/10.5539/ibr.v5n2p159
- Floros, C. (2009). Modelling Volatility Using High, Low, Open and Closing Prices: Evidence from Four S&P Indices. *International Research Journal of Finance and Economics*(28), 198 205. Retrieved from http://www.eurojournals.com/finance.htm
- Gadaleta, F. (2019). Entropy in machine learning From physics to data analytics. *Medium*. Retrieved from https://frag.medium.com/entropy-in-machine-learning-from-physics-to-data-analytics-fc7035bba83
- Garman, M. B., & Klass, M. J. (1980, Jan). On the Estimation of Security Price Volatilities from Historical Data. *The Journal of Business*, 53(1), 67-78. Retrieved from https://www.jstor.org/stable/2352358
- Ghosh, B., & Nisha, N. (2018). Comparative volatility study on INDIA VIX by GARCH and Shannon Entropy from a Behavioural Finance Viewpoint. *International Journal of Applied Business and Economic Research*, *16*(2), 317 324. Retrieved from www.serialsjournals.com
- Ghosh, B., & Nisha, N. (2018). Comparative Volatility Study on India vix by GARCH and Shannon's Entropy from a Behavioural Finance Viewpoint. *International Journal of Applied Business and Economic Research*, 6(2), 317-324.
- Herger, N. (2024). A Runs Test for Stock-Market Prices with an Unobserved Trend. Swiss National Bank, Study Center Gerzensee. doi:https://hdl.handle.net/10419/283525
- Jaynes, E. T. (1991). *How Should we use Entropy in Economics?* Department of Physics. USA: Washington University in St. Louis. Retrieved August 09, 2024, from https://bayes.wustl.edu/etj/articles/entropy.in.economics.pdf
- Jizba, P., & Tabachová, H. L. (2022). Causal Inference in Time Series in Terms of Rényi Transfer Entropy. *Entropy*, 24(855), 213 244. doi:https://doi.org/10.3390/e24070855
- Karkowska, R., & Urjasz, S. (2022). Linear and Nonlinear Effects in Connectedness Structure: Comparison between European Stock Markets. *Entropy*, 24(303), 163 - 181. doi:https://doi.org/10.3390/e24020303
- Kralingen, M. v., Garlaschelli, D., Scholtus, K., & Lelyveld, I. v. (2021). Crowded Trades, Market Clustering, and Price Instability. *Entropy*, 23(336), 5-33. doi:https://doi.org/10.3390/e23030336
- Liao, Z., Zhang, H., Guo, K., & Wu, N. (2021). A Network Approach to the Study of the Dynamics of Risk Spillover in China's Bond Market. *Entropy*, 23(920), 66 76. doi:https://doi.org/10.3390/e23070920

1934 Journal of Asian Development Studies

- Mahmouda, I., & Naouib, K. (2017). Measuring systematic and specific risk: Approach meanentropy. *Asian Journal of Empirical Research*, 7(3), 42-60. doi:10.18488/journal.1007/2017.7.3/1007.3.42.60
- Nanda, A. K., & Chowdhury, S. (2019, Jan 28). Shannon's entropy and Its Generalizations • Reliability Information towards Statistics. and Science during 1948-2018. arXiv:1901.09779v1 33. Retrieved 10. [stat.OT] 1 July 2024, from -. https://arxiv.org/pdf/1901.09779
- Olbry's, J., & Majewska, E. (2022). Regularity in Stock Market Indices within Turbulence Periods: The Sample Entropy Approach. *Entropy*, 24(921), 245 266. doi:https://doi.org/10.3390/e24070921
- Olbry's, J., & Ostrowski, K. (2021). An Entropy-Based Approach to Measurement of Stock Market Depth. *Entropy*, 23(568). doi:https://doi.org/10.3390/e23050568
- Shannon, C. E. (1948, July,Oct). A Mathematical Theory of Communication. (*Reprinted with corrections from*) The Bell System Technical Journal, 27, 379 423, 623 656. Retrieved July 14, 2024, from

https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy.pdf

- Stosic, D. (2016). *Applications of Entropy on Financial Markets*. Universidade federal de pernambuco, centro de informática, pós-graduação em ciência da computação. brazil: universidade federal de pernambuco.
- Stosic, D., Stosic, D., Ludermir, T., Oliveirab, W. d., & Stosicb, T. (2016). Foreign exchange rate entropy evolution during financial crises. *Physica A: Statistical Mechanics and its Applications*, 449, 233-239. doi:https://doi.org/10.1016/j.physa.2015.12.124
- Twarog, B. (2023). Application of Shannon Entropy in Assessing Changes in Precipitation Conditions and Temperature Based on Long-Term Sequences Using the Bootstrap Method. *Preprints.org*, 1 28. doi:doi: 10.20944/preprints202308.0260.v1
- Vinte, C., Ausloos, M., & Furtuna, T. F. (2021). A Volatility Estimator of Stock Market Indices Based on the Intrinsic Entropy Model. *Entropy*, 23(484), 1 - 33. doi:10.3390/e23040484
- Vinte, C., Smeureanu, I., Furtuna, T.-F., & Ausloos, M. (2019). An Intrinsic Entropy Model for Exchange-Traded Securities. *Entropy*, *21*(1173), 1-19. doi:10.3390/e21121173
- Wang, G., Wei, D., Li, X., & Wang, N. (2023). A novel method for local anomaly detection of time series based on multi entropy fusion. *Physica A: Statistical Mechanics and its Applications*, 615. doi:https://doi.org/10.1016/j.physa.2023.128593
- Wang, S., Khan, S. A., Munir, M., Alhajj, R., & Khan, Y. A. (2022). Entropy-based financial asset pricing:Evidence from Pakistan. *PLoS ONE*, *17*(12), 1 -14. doi:https://doi.org/10.1371/journal.pone.0278236
- Wiener, N. (1948). CYBERNETICS. *Scientific American*, *179*(5), 14-19. Retrieved August 11, 2024, from https://www.jstor.org/stable/24945913
- Yang, D., & Zhang, Q. (2000). Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices. *The Journal of Business*, 73(3), 477-492. Retrieved from https://www.jstor.org/stable/10.1086/209650
- Yin, D. (2019). Investment Decision Based on Entropy Theory. *Modern Economy*, *10*, 1211-1228. doi:https://doi.org/10.4236/me.2019.104083

		ENTROP Y	ACU_ ENTROP Y	vol_gk	vol_ht	vol_rs	vol_yz	vol_park	vol_raw	vol_kur	vol_skew	vol_garch	vol_egarc h	vol_gjrga rch
aapl	Me	1.48306	0.0055	0.1991	0.2410	0.1991	0.2860	0.1992	0.2409	0.17088	0.07061	2.14155	9.84298	2.1280
-	an	E-06	9732	97727	99772	43111	97402	89595	89967	6357	8114	7864	778	30341
	Va	6.70359	2.0267	0.0077	0.0239	0.0082	0.0253	0.0077	0.0238	4.00678	0.89038	0.40064	59.0406	0.4368
	r	E-09	E-06	00988	20617	20885	43326	39554	98834	6199	0894	9167	1713	72153
	CV	55.1302	0.2536	0.4404	0.6414	0.4552	0.5564	0.4412	0.6414	11.7154	13.3609	0.29555	0.78071	0.3106
		4375	7584	32471	09115	6482	84276	41145	09115	7276	385	0084	4959	04808
amd	Me	2.30483	0.0018	0.4233	0.4827	0.4230	0.5723	0.4235	0.4825	0.21758	0.04859	3.53174	12.4673	3.5297
	an	E-07	7506	27438	62927	85307	61322	59469	46764	7085	7638	4139	5956	65312
	Va	3.07481	2.0784	0.0213	0.0906	0.0219	0.0654	0.0242	0.0905	4.24508	0.95358	0.62205	31.6997	0.6171
	r	E-08	E-06	40194	77087	1223	33978	92531	95901	488	0003	4357	7812	05591
	CV	760.922	0.7687	0.3451	0.6238	0.3499	0.4469	0.3680	0.6238	9.46427	20.0830	0.22332	0.45164	0.2225
		3083	6985	26166	57852	21635	91375	2527	57852	0682	439	9963	5715	63593
amzn	Me	2.51083	0.0041	0.2290	0.2706	0.2288	0.3245	0.2284	0.2704	0.11877	0.08188	2.04365	4.61860	2.0503
	an	E-06	5801	51867	56891	72543	99946	32885	58654	0794	1155	5696	2731	74302
	Va	8.70451	9.0666	0.0094	0.0308	0.0096	0.0353	0.0096	0.0308	4.21632	0.91351	0.33283	11.8538	0.4099
	r	E-09	E-06	4262	58337	42513	52234	30381	13151	3407	6032	8177	0809	8271
	CV	37.1625	0.7240	0.4242	0.6491	0.4291	0.5793	0.4296	0.6491	17.2898	11.6741	0.28229	0.74557	0.3123
		9236	4958	98627	40108	01785	35593	57361	40108	7367	7662	4056	0047	22799
fbmet	Me	-	-	0.2675	0.3253	0.2677	0.3851	0.2662	0.3248	0.15852	0.05618	2.34776	6.04038	2.3580
a	an	9.56817	0.0016	56079	34882	67039	85866	06114	02524	9454	4818	6882	217	76952
		E-07	63											
	Va	1.39481	1.0095	0.0139	0.0586	0.0146	0.0700	0.0139	0.0584	4.22667	0.91511	0.74402	26.4671	0.9734
	r	E-08	E-06	57492	0622	27066	6298	89685	14577	1818	2787	665	9458	75318
	CV	-	-	0.4415	0.7441	0.4516	0.6871	0.4443	0.7441	12.9684	17.0262	0.36740	0.85170	0.4184
		123.432	0.6041	59129	16997	70256	85455	09844	16997	8666	2351	0103	5669	12354
		3137	666											
msft	Me	0.00027	-	0.1880	0.2234	0.1885	0.2647	0.1868	0.2233	0.14787	0.07268	1.62797	2.94173	1.6334
	an	1311	0.0245	05837	65738	14582	81232	48855	50067	4366	3036	9267	4931	08046
			541											
	Va	0.00022	1.7794	0.0068	0.0232	0.0071	0.0210	0.0068	0.0232	4.15243	0.90705	0.41266	9.64167	0.4421
	r	4525	0345	26167	68391	63153	51035	65762	44308	0957	433	0189	0274	98914

	CV	55.2286 9339	- 54.326 743	0.4394 57747	0.6826 0934	0.4489 59501	0.5479 60843	0.4434 59463	0.6826 0934	13.7802 8867	13.1033 8763	0.39459 1219	1.05553 4907	0.4071 12226
n225	Me an	9.00743 E-07	0.0021 0851	0.1126 29962	0.1742 97604	0.1109 71485	0.1886 29489	0.1159 85478	0.1741 27012	0.07349 0982	0.04899 7797	1.22391 8079	1.64649 08	1.2168 55965
	Va r	2.85704 E-09	1.282E -06	0.0031 85553	0.0105 8273	0.0031 13622	0.0059 87798	0.0037 36465	0.0105 62025	4.05931 0266	0.86803 2936	0.17134 2304	1.84297 0281	0.2031 06486
	CV	59.3412 8292	0.5370 0382	0.5011 16231	0.5902 11201	0.5028 30413	0.4102 26764	0.5270 19676	0.5902 11201	27.4152 4144	19.0147 9049	0.33820 4944	0.82451 7462	0.3703 58845
dax	Me an	4.70371 E-06	0.0099 5773	0.0943 91885	0.1835 87733	0.0925 49776	0.2175 82175	0.1014 91866	0.1832 11158	0.15362 2525	- 0.05036 7705	1.28478 8234	1.83440 7485	1.2879 95749
	Va r	6.40856 E-09	6.9442 E-06	0.0043 56496	0.0142 09794	0.0049 89215	0.0193 82562	0.0041 15864	0.0141 5156	4.10778 2757	0.89870 184	0.27179 7879	3.75245 627	0.3329 17405
	CV	17.0192 3171	0.2646 37	0.6992 52485	0.6493 07228	0.7632 04142	0.6398 56047	0.6321 19643	0.6493 07228	13.1931 602	- 18.8215 6148	0.40578 0788	1.05599 5351	0.4479 75044
rusell	Me an	4.3006E -06	0.0035 6395	0.1702 82567	0.2276 20262	0.1680 16641	0.2094 82613	0.1824 62289	0.2267 13121	- 0.16966 1444	0.00037 2444	1.55004 1702	2.94972 9523	1.5610 78598
	Va r	2.59164 E-08	3.5614 E-06	0.0074 54207	0.0266 24165	0.0072 01736	0.0129 17172	0.0093 63483	0.0264 12376	3.57288 1327	0.71367 6043	0.69459 7211	25.5849 521	0.8974 5524
	CV	37.4333 5028	0.5295 1755	0.5070 26355	0.7168 48002	0.5050 87136	0.5425 44961	0.5303 29258	0.7168 48002	- 11.1410 5037	2268.24 032	0.53767 9075	1.71478 6711	0.6068 50381
szse	Me an	6.92036 E-07	0.0008 9512	0.1607 16199	0.1997 61446	0.1576 14542	0.2112 52933	0.1680 48038	0.1990 72399	0.08394 7792	0.06486 3869	- 0.01280 1034	1.96528 0166	1.3720 26937
	Va r	7.55416 E-09	3.1918 E-07	0.0034 80111	0.0104 65291	0.0037 3577	0.0091 64409	0.0039 06665	0.0103 93014	4.02192 9362	0.85193 4758	0.99759 5794	0.95835 5156	0.1244 55034
	CV	125.592 7196	0.6311 5411	0.3670 59843	0.5121 10851	0.3877 8747	0.4531 57814	0.3719 37231	0.5121 05809	23.8895 4846	14.2298 4995	- 78.0247 2819	0.49812 5496	0.2571 2458

sse	Me an	- 8.6219E -07	- 0.0014 69	0.1400 98336	0.1639 26752	0.1386 6119	0.1798 30371	0.1445 77812	0.1637 64178	0.24873 9008	0.00267 6772	1.19773 9637	1.69144 2287	1.2012 66604
	Va r	1.68129 E-10	7.2678 E-07	0.0066 18069	0.0127 63351	0.0070 08136	0.0135 23751	0.0069 26125	0.0127 38047	4.38186 8606	0.95000 7561	0.28610 4199	3.81753 8637	0.2926 32974
	CV	- 15.0389 7902	- 0.5803 396	0.5806 74383	0.6891 79761	0.6037 34986	0.6466 74204	0.5756 30144	0.6891 79761	8.41561 3429	364.126 4052	0.44658 0437	1.15513 9771	0.4503 21028
fchi	Me an	- 0.00509 2236	0.0018 7886	0.1253 31815	0.1539 30227	0.1256 73719	0.1789 97796	0.1258 65289	0.1537 77959	0.11519 126	0.01671 0345	1.09714 3126	1.43555 8241	1.0981 22923
	Va r	0.07910 4025	1.051E -05	0.0039 60221	0.0105 95565	0.0043 57524	0.0108 7888	0.0039 29	0.0105 74614	4.18817 6166	0.89154 4592	0.23793 7005	3.92248 7027	0.3343 96714
	CV	- 55.2320 0436	1.7254 3601	0.5021 09434	0.6687 10527	0.5252 61355	0.5826 99178	0.4980 06547	0.6687 10527	17.7661 3436	56.5049 0066	0.44459 8209	1.37962 1461	0.5265 99016
hsi	Me an	4.50391 E-06	0.0033 0265	0.1609 39663	0.2146 5136	0.1603 26867	0.2468 48021	0.1619 96703	0.2137 78511	0.11285 5372	0.01763 0778	1.47169 3091	2.21389 367	1.4525 56536
	Va r	1.43544 E-08	6.2132 E-06	0.0033 01369	0.0124 46105	0.0032 84377	0.0102 3161	0.0035 36466	0.0123 45091	3.78840 2309	0.85003 3538	0.11859 066	1.11778 0157	0.1210 58926
	CV	26.6013 0955	0.7547 3496	0.3570 12917	0.5197 36349	0.3574 54054	0.4097 72066	0.3670 95103	0.5197 36349	17.2466 9204	52.2933 5943	0.23399 5763	0.47755 2848	0.2395 33005
gold	Me an	4.6137E -06	0.0096 0707	0.3067 15417	0.3508 14414	0.3053 95703	0.4207 92297	0.3058 62101	0.3506 37657	0.27079 4957	- 0.01713 479	2.44955 6844	6.56807 0862	2.4512 20473
	Va r	1.37422 E-08	1.2828 E-05	0.0176 60235	0.0377 61726	0.0171 49196	0.0345 81468	0.0185 18702	0.0377 23683	4.36585 3404	0.98251 7703	0.42389 0777	14.4757 2383	0.4256 33068
	CV	25.4085 1913	0.3728 0704	0.4332 74005	0.5539 21842	0.4288 04135	0.4419 30453	0.4449 17615	0.5539 21842	7.71603 1694	- 57.8484 0668	0.26579 0505	0.57927 1704	0.2661 55414
crude oil	Me an	- 2.48208 E-05	0.3486 4119	0.4230 45365	0.3997 77546	0.4237 55601	0.4952 41881	0.4142 61617	0.3981 81758	- 0.05528 1885	- 0.16540 6616	2.79090 2571	9.60213 158	2.7753 67488
	Va r	1.20318 E-06	0.0002 9833	0.0908 89707	0.1239 8271	0.0896 87248	0.1406 13769	0.0888 2999	0.1229 94884	4.09992 9014	0.79408 3517	3.11122 5691	227.945 1147	2.8172 79491

	CV	- 44.1925 3178	0.0495 4191	0.7126 40351	0.8807 69293	0.7067 24093	0.7571 75511	0.7194 57443	0.8807 69293	- 36.6273 3556	- 5.38741 2294	0.63200 5827	1.57234 3724	0.6047 75892
dji	Me an	7.94973 E-07	0.0010 5707	0.1281 26119	0.1703 64328	0.1274 98564	0.1754 14774	0.1306 55421	0.1696 8537	- 0.01627 7928	- 0.00601 6048	1.17001 3234	1.84018 8945	1.1903 88073
	Va r	1.11739 E-08	4.8427 E-07	0.0062 39676	0.0211 81892	0.0062 13175	0.0142 92712	0.0066 00769	0.0210 13395	3.82802 2809	0.77415 0461	0.60172 3652	12.4522 0179	0.7041 95005
	CV	132.969 0825	0.6583 2249	0.6165 14601	0.8542 86839	0.6182 32005	0.6815 39693	0.6218 27379	0.8542 86839	- 120.195 4766	- 146.251 862	0.66299 1205	1.91761 1642	0.7049 49332
pimc o	Me an	3.85017 E-08	4.7369 E-05	0.0303 15247	0.0389 99256	0.0306 99343	0.0487 50944	0.0302 86638	0.0389 36548	0.02382 0415	- 0.08466 8681	0.26929 5477	0.08689 0022	0.2709 82978
	Va r	2.94243 E-10	3.211E -08	0.0003 52791	0.0008 07206	0.0003 53381	0.0007 96234	0.0004 09481	0.0008 04612	3.90285 0985	0.81398 6476	0.01853 9848	0.01281 8436	0.0195 90488
	CV	445.525 8028	3.7829 3753	0.6195 80599	0.7285 107	0.6123 39957	0.5788 11839	0.6681 37619	0.7285 107	82.9357 2724	- 10.6557 9359	0.50561 9746	1.30300 9598	0.5165 12234
pketf	Me an	1.44367 E-05	0.0123 308	0.1661 7924	0.2176 84491	0.1757 626	0.2861 3079	0.1620 38112	0.2168 16948	0.25714 8364	- 0.01894 4075	1.55567 012	2.61701 7954	1.5467 81484
	Va r	4.19801 E-08	3.3251 E-05	0.0125 1189	0.0194 98444	0.0153 80134	0.0288 07639	0.0103 48826	0.0193 43338	4.02178 9557	0.95528 7072	0.28041 8657	5.56562 1454	0.3336 29241
	CV	14.1923 6665	0.4676 3975	0.6731 07899	0.6414 64297	0.7055 91916	0.5931 83746	0.6278 10208	0.6414 64297	7.79876 6269	- 51.5933 2821	0.34039 7171	0.90146 7617	0.3734 24742
spy	Me an	2.43165 E-06	0.0022 9259	0.1324 50559	0.1652 37525	0.1333 51326	0.1942 45323	0.1315 9599	0.1645 78999	- 0.07285 8068	0.02044 2623	1.12408 3094	1.69217 6668	1.1429 16984
	Va r	1.61854 E-08	1.4625 E-06	0.0077 88563	0.0191 92136	0.0086 54675	0.0225 71212	0.0070 27595	0.0190 39467	3.71710 9773	0.75959 3397	0.51657 6406	10.5206 3235	0.6158 37635
	CV	52.3192 5265	0.5274 934	0.6663 07749	0.8384 03295	0.6976 3463	0.7734 40426	0.6370 3119	0.8384 03295	- 26.4621 4496	42.6337 9226	0.63939 4457	1.91679 3021	0.6866 23126

btcus d	Me an	5.96916 E-07	- 0.0001 481	0.4601 24684	0.4816 83253	0.4548 50135	0.5186 72348	0.4728 03779	0.4810 10623	0.45990 9585	0.02325 2139	3.59219 4308	21.9962 4036	3.5658 95604
	Va r	5.78707 E-08	1.2915 E-05	0.0892 77825	0.1141 89136	0.0967 69958	0.1178 67353	0.0898 89555	0.1138 70448	4.41528 7253	1.05440 3632	2.42236 8498	430.178 9898	2.3073 60756
	CV	- 2.34824 1438	1.9745 5386	0.5591 74987	0.7632 95758	0.5488 28287	0.5590 39138	0.6012 81274	0.7632 95759	1.34374 0724	- 0.79277 7985	0.50301 7561	1.58600 2364	0.5277 65223
doge usd	Me an	- 7.0924E -05	- 0.0653 043	0.8112 08217	0.7614 76447	0.8160 98573	0.9169 30207	0.8077 06808	0.7599 10655	0.29591 7782	0.00720 3318	5.74779 8654	1053.10 8864	5.8073 28451
	Va r	5.03815 E-06	0.0043 1703	0.5062 11518	0.6979 85774	0.4980 18857	0.6473 34402	0.5451 03813	0.6951 18247	4.26105	0.96119 2077	23.9029 2706	102369 8007	26.209 933
	CV	- 31.6477 0652	- 1.0061 225	0.8770 68817	1.0971 52029	0.8647 29501	0.8774 61487	0.9140 83493	1.0971 52028	6.97569 2599	136.104 5051	0.85059 7294	30.3817 4126	0.8815 69519
etcus d	Me an	- 2.6094E -05	- 0.0288 421	0.7710 98442	0.7480 54983	0.7739 95479	0.8702 65449	0.7724 47016	0.7465 16789	0.39794 0322	- 0.13624 0699	6.04818 1484	46.9969 9957	5.9929 83669
	Va r	1.30507 E-06	0.0008 0591	0.2539 35726	0.3114 49701	0.2720 97549	0.3346 56186	0.2572 36898	0.3101 70175	4.12693 584	0.98602 8432	7.51994 2851	2384.54 4846	7.7771 89605
	CV	- 43.7800 1758	- 0.9842 725	0.6535 09758	0.7460 37123	0.6739 44123	0.6647 33685	0.6565 95546	0.7460 37123	5.10500 1942	- 7.28849 4949	0.45340 0981	1.03904 0833	0.4653 37711
ethus d	Me an	2.70432 E-06	0.0052 0933	0.5966 28258	0.6269 19473	0.5904 82846	0.6726 28293	0.6126 8046	0.6256 30365	0.27356 0952	0.02876 3757	4.78552 1045	26.1912 4937	4.7598 84787
	Va r	1.56904 E-07	5.0662 E-05	0.1252 47093	0.1633 08006	0.1389 31081	0.1687 23226	0.1268 17649	0.1626 3709	4.11424 4082	0.94047 8274	3.15004 4886	367.783 8113	3.0322 585
	CV	146.473 5636	1.3663 4333	0.5931 71134	0.6446 0249	0.6312 36964	0.6106 78041	0.5812 40435	0.6446 02489	7.41465 4507	33.7154 3527	0.37087 635	0.73221 7474	0.3658 36194
ltcus d	Me an	- 0.10099 2152	- 0.0064 615	0.6546 01509	0.6786 71645	0.6489 08242	0.7371 81312	0.6679 25424	0.6777 24203	0.32168 5946	- 0.03491 3684	5.03110 7822	44.9815 0029	5.0363 68897
	Va r	31.0978 9325	0.0072 4312	0.1837 42988	0.2446 69067	0.1941 55167	0.2406 94637	0.1915 19034	0.2439 86416	4.37516 9953	1.00944 7352	5.71865 9054	3518.95 5253	6.0297 55294

	CV	- 55.2176 4206	- 13.171 359	0.6548 29725	0.7288 36021	0.6790 33477	0.6655 16596	0.6552 06197	0.7288 36021	6.50227 5654	- 28.7770 4257	0.47531 7142	1.31878 1772	0.4875 64762
usdt	Me an	- 7.26335 E-08	- 3.921E -05	0.1248 53181	0.0450 5924	0.1396 40484	0.1511 60294	0.1102 35407	0.0449 4045	- 1.41520 0836	- 0.01461 7656	0.38001 0712	263691. 9426	0.3785 74579
	Va	5.07936	2.1192	0.0206	0.0056	0.0242	0.0279	0.0158	0.0056	7.01335	0.48086	0.11513	2.17906	0.1160
	r	E-10	E-09	89267	33655	23363	22551	65055	03991	8884	2446	4	E+11	64764
	CV	-	-	1.1520	1.6657	1.1145	1.1054	1.1426	1.6657	-	-	0.89290	1.77026	0.8999
		310.289	1.1740	5426	55582	66205	51824	14359	55582	1.87130	47.4386	6445	315	09317
		6175	264							6625	9048			
xrpus	Me	-	-	0.7071	0.7313	0.7311	0.8322	0.7231	0.7298	0.52869	-	5.92397	69.7415	5.9164
d	an	4.46891	0.0093	60169	53241	32955	65164	56807	50008	8489	0.02954	3463	0593	28907
		E-06	596								0923			
	Va	8.94733	1.6245	0.3260	0.3839	0.3437	0.4177	0.3271	0.3823	5.67999	1.14441	10.2955	10764.9	10.092
	r	E-07	E-05	74005	44441	33567	70703	61863	67734	5357	4549	333	6492	29932
	CV	-	-	0.8074	0.8472	0.8018	0.7766	0.7909	0.8472	4.50781	-	0.54164	1.48769	0.5369
		211.663	0.4306	95848	41073	89659	17681	49685	41073	3307	36.2132	0736	8718	51934
		1181	311								5999			
cmc	Me	1.30757	0.0016	0.3117	0.3292	0.3143	0.4114	0.3068	0.3291	0.09697	0.01186	2.28894	5.86460	2.2982
	an	E-06	9619	23757	95482	68819	8725	60103	48035	631	2213	8289	0045	42527
	Va	1.16287	4.4145	0.0132	0.0347	0.0145	0.0311	0.0121	0.0346	3.98108	0.86404	0.50992	19.1930	0.5775
	r	E-08	E-06	59084	28683	22854	67311	80317	97589	273	8181	6513	7203	10894
	CV	82.4825	1.2387	0.3694	0.5659	0.3833	0.4290	0.3596	0.5659	20.5781	78.3735	0.31202	0.74714	0.3307
		842	619	251	90456	41514	96093	99502	90456	0018	4778	2737	4203	15801
usdjp	Me	-	720.95	0.0752	0.0706	0.0915	0.1289	0.0639	0.0704	0.17799	-	0.49861	0.27417	0.4980
У	an	3107.10	7224	70042	37377	27535	84419	45103	29571	0416	0.02608	615	3497	47603
		5563									8382			
	Va	567449	135300	0.0014	0.0018	0.0023	0.0046	0.0010	0.0018	4.17246	0.91224	0.02859	0.03980	0.0306
	r	648.1	7317	81977	5956	05573	08604	69504	48635	2488	0488	588	8955	60115
	CV	-	51.020	0.5114	0.6104	0.5246	0.5263	0.5114	0.6104	11.4762	-	0.33914	0.72772	0.3515
		7.66668	0142	44634	7876	11348	1704	27329	7876	3949	36.6106	498	1021	73423
		5657									5756			

eurus d	Me an	- 150.505 1567	- 922.28 625	0.1039 46735	0.1019 3966	0.1347 63635	0.1814 89788	0.0949 32173	0.1018 44007	0.68917 2175	- 0.02197 3355	0.76591 683	7.02654 3892	0.7667 1352
	Va r	22750.4 5101	252347 134	0.2377 13067	0.0068 57029	0.4709 49157	0.5235 57802	0.1712 77853	0.0068 44167	8.80108 9332	1.45097 0611	0.12490 5003	126.060 3551	0.1224 77982
	CV	- 1.00217 514	- 17.223 978	4.6904 6259	0.8123 15642	5.0923 03663	3.9868 52106	4.3595 05044	0.8123 15643	4.30467 6108	- 54.8192 3168	0.46143 2632	1.59789 2284	0.4564 52815
cnyus d	Me an	- 274760 8.933	28196. 0868	0.0452 7168	0.0394 27726	0.0565 31297	0.0775 38035	0.0389 17158	0.0393 48413	0.44752 7501	0.03009 2534	0.27137 1632	0.20779 0185	0.2729 93654
	Va r	6.35176 E+14	1.4079 E+12	0.0007 98178	0.0010 50806	0.0012 44979	0.0031 63969	0.0007 50115	0.0010 46583	4.71841 1719	1.05692 5784	0.02347 9134	0.04274 5016	0.0226 21485
	CV	- 9.17259 3639	42.082 7419	0.6240 55402	0.8221 66152	0.6241 54507	0.7254 39734	0.7037 57239	0.8221 66153	4.85375 8776	34.1635 8833	0.56464 6433	0.99498 7704	0.5509 44697

		ENTROP	vol_gk	vol_ht	vol_rs	vol_yz	vol_pa	vol_ra	vol_ku	vol_ske	vol_gar	vol_egar	vol_gjrg
		Y					rk	W	r	W	ch	ch	arch
aapl	MSE	0.08198597	0.1293 6783	0.1640 4665	0.1298 627	0.1891 6818	0.1294 4719	0.1639 7193	4.1153 5671	0.9768 6339	5.0688 9352	155.9779 2	5.04727 39
	PB	1.00000295 9	0.3305 3857	0.0004 5564	0.3535 7024	0.4217 1233	0.3006 3864	0	9.6205 4841	4.3184 2971	10.344 39	44.83868 972	10.2091 859
	EE	3565078.32 8	3.1033 4629	0.9990 8934	2.9070 876	0.9430 0305	3.0878 8259	1	0.0059 6459	0.0268 4114	0.0596 5028	0.000404 786	0.05470 441
amd	MSE	0.32338873 7	0.5239 2162	0.6470 6721	0.5242 8878	0.7163 7765	0.5270 6816	0.6467 7741	4.6163 5917	1.2795 5857	13.418 3896	187.4416 306	13.3994 745
	PB	0.99999988 2	0.3645 8374	0.0004 4796	0.3981 0882	0.4772 0833	0.3193 6287	0	5.0110 6962	2.3581 0638	8.7814 8473	31.09379 852	8.77903 695
	EE	2946394.19 8	4.2453 1764	0.9991 0467	4.1344 9022	1.3845 391	3.7293 7268	1	0.0213 4136	0.0950 0608	0.1456 3985	0.002857 935	0.14680 778
amzn	MSE	0.10394142 5	0.1658 4335	0.2080 3526	0.1659 607	0.2446 3569	0.1657 4851	0.2078 8283	4.3330 4032	1.0236 4895	4.6132 2223	33.28151 603	4.71772 655
	PB	1.00000028 2	0.3125 9369	0.0007 3297	0.3365 2757	0.4164 4631	0.2849 2213	0	9.0587 9645	3.9878 0346	8.9063 4379	18.30698 386	8.83778 885
	EE	3539906.00 6	3.2631 9915	0.9985 3568	3.1955 5181	0.8716 0406	3.1995 7759	1	0.0073 0806	0.0337 3028	0.0925 7697	0.002599 431	0.07515 72
fbmet a	MSE	0.16389217 5	0.2494 3135	0.3283 2201	0.2502 1363	0.3823 0039	0.2487 4297	0.3277 8432	4.4143 1385	1.0818 6253	6.4196 8492	63.10865 126	6.69757 616
	PB	1.00000857 4	0.3246 6075	0.0016 3902	0.3531 1067	0.4167 923	0.2884 6783	0	7.9624 7718	3.5602 7469	8.5963 804	19.83596 772	8.48193 366
	EE	4187986.66 5	4.1851 7727	0.9967 3	3.9935 9503	0.8337 4384	4.1755 4642	1	0.0138 2047	0.0638 332	0.0785 114	0.002207 056	0.06000 622
msft	MSE	0.07334639 1	0.1152 9206	0.1463 1964	0.1158 2049	0.1642 7517	0.1148 9795	0.1462 4388	4.2460 5827	0.9851 617	3.1359 6332	18.36543 542	3.18319 772
	PB	1.00046691 5	0.3433 8618	0.0005 1789	0.3693 1609	0.4459 7622	0.3093 6658	0	10.946 5886	4.9345 379	8.3048 3686	13.26561 808	8.27586 95

	EE	103.526705 6	3.4051 7717	0.9989 6503	3.2449 828	1.1041 884	3.3855 3958	1	0.0055 9776	0.0256 2615	0.0563 2796	0.002410 818	0.05256 528
n225	MSE	0.04087878	0.0567 4879	0.0818 3769	0.0563 0605	0.0824 457	0.0580 6665	0.0817 5755	4.1042 5861	0.9110 278	1.7101 4035	4.594176 562	1.72465 709
	PB	1.00000453	0.3799 4146	0.0009 797	0.3931 8579	0.3657 4602	0.3612 6467	0	13.737 3902	6.0644 217	7.7062 3359	8.926138 583	7.56020 037
	EE	3696846.23	3.3156 0185	0.9980 4347	3.3921 9899	1.7639 2465	2.8267 4278	1	0.0026 0193	0.0121 6777	0.0616 4283	0.005730 98	0.05200 24
dax	MSE	0.04771209 7	0.0609 7663	0.0956 2052	0.0612 6472	0.1144 2872	0.0621 2687	0.0954 2418	4.1774 119	0.9485 8267	1.9700 7943	7.163681 92	2.03942 616
	PB	0.99998430 6	0.4779 8106	0.0020 5541	0.5012 1605	0.3699 7752	0.4424 9541	0	12.835 0149	5.8750 7714	7.6110 9492	9.467662 461	7.54943 096
	EE	2208227.69 5	3.2483 81	0.9959 0181	2.8364 3041	0.7301 1813	3.4382 9605	1	0.0034 4506	0.0157 4667	0.0520 6648	0.003771 279	0.04250 772
rusell	MSE	0.07779024 5	0.1142 3465	0.1562 042	0.1132 1582	0.1345 8009	0.1204 3875	0.1555 8044	3.6766 1642	0.7908 9909	3.1744 6456	34.34330 877	3.41149 845
	PB	0.99999649 8	0.3091 2101	0.0040 0127	0.3423 8847	0.2967 7242	0.2546 9907	0	9.9798 1602	4.3170 1854	7.0610 5843	10.72139 892	6.98330 227
	EE	1019136.27 5	3.5432 8448	0.9920 4523	3.6675 0112	2.0447 4913	2.8207 8545	1	0.0073 9246	0.0370 0891	0.0380 2546	0.001032 34	0.02943 03
szse	MSE	0.05001567 9	0.0793 2308	0.1003 7838	0.0785 9121	0.1038 0157	0.0821 5979	0.1000 3134	4.0762 2043	0.9055 7061	1.0470 8781	4.870036 479	2.05684 285
	PB	1.00001560 7	0.3139 8871	0.0034 5914	0.3461 7292	0.3373 8788	0.2695 498	0	10.537 4194	4.6890 5087	4.3407 6384	10.00948 357	7.18873 614
	EE	1375799.21 4	2.9864 0326	0.9930 9364	2.7820 2731	1.1340 6269	2.6603 2871	1	0.0025 8409	0.0121 9931	0.0104 1806	0.010844 637	0.08350 818
sse	MSE	0.03955257 7	0.0657 9602	0.0791 8372	0.0657 8534	0.0854 1086	0.0673 7918	0.0791 0515	4.4818 556	0.9892 5582	1.7601 4321	6.716816 572	1.77513 106
	PB	1.00000620 6	0.3176 4369	0.0009 9273	0.3534 7596	0.3768 3026	0.2704 5074	0	15.206 4479	6.6100 531	7.8331 3733	9.347861 418	7.84980 876
	EE	75763496.7 4	1.9247 3775	0.9980 1749	1.8176 0838	0.9419 0195	1.8391 3029	1	0.0029 0699	0.0134 0836	0.0445 2241	0.003336 717	0.04352 909
fchi	MSE	0.11329688 3	0.0538 8579	0.0685 0541	0.0543 6879	0.0771 3433	0.0539 8859	0.0684 3761	4.2342 9083	0.9257 5033	1.4758 0084	6.016247 235	1.57437 984

	PB	1.01284697 4	0.3374 4291	0.0009 9018	0.3619 8733	0.4381 7398	0.3055 808	0	16.887 9649	7.3308 021	7.9225 8771	8.062244 151	7.63111 359
	EE	0.13367984 2	2.6702 0795	0.9980 2258	2.4267 4796	0.9720 3148	2.6914 2602	1	0.0025 2487	0.0118 61	0.0444 4291	0.002695 895	0.03162 296
hsi	MSE	0.02941176	0.0442 0992	0.0590 6417	0.0441 0154	0.0654 7295	0.0445 0195	0.0588 2351	1.9542 0236	0.4600 0139	1.1870 9133	3.079325 072	1.15998 165
	PB	186718751 7	0.2326 1842	0.0020 6076	0.2470 9101	0.1213 127	0.2182 5463	0	- 0.1492 414	- 0.1675 612	0.4347 0796	0.455080 523	0.43371 051
	EE	860022.081 1	3.7393 8555	0.9918 8382	3.7587 3072	1.2065 6377	3.4907 9824	1	0.0032 5865	0.0145 2306	0.1040 9834	0.011044 292	0.10197 588
gold	MSE	0.16065809 1	0.2723 8687	0.3214 7817	0.2710 6818	0.3722 9436	0.2727 2233	0.3213 1615	4.5984 0949	1.1431 4714	6.5847 3856	57.77118 906	6.59463 336
	PB	0.99998308 7	0.3282 461	0.0005 041	0.3553 5867	0.4617 7322	0.2927 8534	0	6.7372 5846	3.1302 0606	7.6693 2624	20.10188 145	7.67494 981
	EE	2745090.81	2.1360 8047	0.9989 9256	2.1997 3475	1.0908 6415	2.0370 5875	1	0.0086 4062	0.0383 9491	0.0889 9388	0.002605 996	0.08862 959
crude oil	MSE	0.28144702 9	1.0905 9648	11.181 5959	320.23 4034	10.903 4712	0.2603 7207	0.2814 4583	4.0997 2602	0.8208 1164	10.897 8897	319.9648 492	10.5177 047
	PB	0.9999873	0.3723 4451	0.0040 0769	0.4110 5646	0.4960 9668	0.3065 7224	0	6.3569 5315	2.9351 4894	7.4698 827	21.22401 413	7.43278 517
	EE	102225.061 9	1.3532 3227	0.9920 3255	1.3713 7539	0.8747 0015	1.3846 0991	1	0.0299 9927	0.1548 891	0.0395 3261	0.000539 581	0.04365 732
dji	MSE	0.04978982 7	0.7962 2229	2.0203 6536	15.851 0628	2.1657 1069	0.0236 6636	0.0497 8982	3.8252 4484	0.7735 7127	1.9701 763	15.82859 873	2.12065 9
	PB	1.00002107 2	0.3214 3051	0.0040 0127	0.3457 0645	0.3333 1658	0.2876 274	0	14.661 9159	6.7953 4828	7.3076 8023	8.209653 644	7.31942 254
	EE	1880573.92 9	3.3677 059	0.9920 4523	3.3820 7064	1.4702 175	3.1834 7678	1	0.0054 8936	0.0271 4381	0.0349 22	0.001687 524	0.02984 031
pimco	MSE	0.00232040 4	0.0035 9209	0.0046 4829	0.0036 1612	0.0054 9303	0.0036 4703	0.0046 4081	3.9044 5876	0.8232 087	0.0933 7422	0.022684 511	0.09533 624
	PB	1.00000817 2	0.3704 7502	0.0016 1051	0.3907 0708	0.5100 2705	0.3447 2658	0	62.089 8419	27.495 2776	7.4541 6852	1.244461 883	7.47608 448
	EE	2734518.32 3	2.2807 0408	0.9967 8674	2.2768 9719	1.0105 223	1.9649 5585	1	0.0002 0616	0.0009 8848	0.0433 9909	0.062769 942	0.04107 159

pketf	MSE	0.06633759 3	0.1064 5503	0.1332 0703	0.1125 9795	0.1769 9312	0.1029 345	0.1326 751	4.1510 5542	1.0212 2413	2.7666 4282	12.47631 779	2.79223 455
	PB	0.99992384 8	0.4431 5136	0.0040 0127	0.4798 2473	0.5736 8017	0.4097 0987	0	10.998 3349	5.1124 8049	8.1862 3197	12.60459 494	8.12895 807
	EE	460773.994 3	1.5459 9655	0.9920 4523	1.2576 8332	0.6714 6558	1.8691 3357	1	0.0048 0963	0.0202 4872	0.0689 8021	0.003475 504	0.05797 855
spy	MSE	0.04611059 6	0.0714 361	0.0925 909	0.0725 4095	0.1063 9509	0.0704 5009	0.0922 2116	3.7655 7387	0.8055 1807	1.8258 3915	13.42184 183	1.96771 791
	PB	1.00000187 5	0.2951 838	0.0040 0127	0.3136 3912	0.3903 9148	0.2795 5212	0	14.427 1367	6.5856 0689	7.2553 8885	7.830679 017	7.25258 117
	EE	1176333.21 8	2.4445 4179	0.9920 4523	2.1999 0561	0.8435 2879	2.7092 4377	1	0.0051 2212	0.0250 6534	0.0368 5702	0.001809 726	0.03091 637
btcus d	MSE	0.34520436 6	0.6461 6757	0.6913 7474	0.6488 3116	0.7320 54	0.6586 0779	0.6904 0862	4.9705 598	1.3998 0267	15.670 638	914.2176 495	15.3674 195
	PB	1.00000765	0.3476 0051	0.0013 9837	0.4026 21	0.4052 7506	0.2703 7067	0	6.0646 515	2.9156 0752	8.9150 1791	46.45865 533	8.85590 729
	EE	1967670.97 1	1.2754 6171	0.9972 0912	1.1767 128	0.9660 8981	1.2667 8175	1	0.0257 9004	0.1079 9512	0.0470 079	0.000264 705	0.04935 095
dogeu sd	MSE	1.27230202 2	2.4363 5938	2.5498 4249	2.4361 2819	2.7601 2654	2.4695 6722	2.5445 9396	5.6191 66	2.2331 4621	58.202 597	1024386 637	61.1965 299
	PB	1.00002151 1	0.4375 6011	0.0020 605	0.5052 8823	0.5571 4246	0.3447 817	0	4.3639 2557	2.1769 5359	8.9829 095	160.8784 791	9.03934 085
	EE	137970.839 4	1.3731 7746	0.9958 9171	1.3957 6692	1.0738 1632	1.2752 0342	1	0.1631 3303	0.7231 835	0.0290 8088	6.79027 E-10	0.02652 118
etcus d	MSE	0.86733141 7	1.7157 5436	1.7382 3816	1.7383 8492	1.9592 1081	1.7211 3576	1.7346 6022	5.1509 2761	1.8715 1513	44.964 684	4593.150 866	44.5571 791
	PB	1.00001694 9	0.3772 5174	0.0020 605	0.4328 0966	0.4743 8776	0.2968 5103	0	3.5651 0977	2.0050 7599	9.8009 301	65.82062 824	9.69628 844
	EE	237665.772 6	1.2214 5151	0.9958 9171	1.1399 2271	0.9268 3234	1.2057 7638	1	0.0751 575	0.3145 6514	0.0412 4635	0.000130 075	0.03988 204
ethus d	MSE	0.55398380 9	1.0351 4459	1.1102 5262	1.0415 2767	1.1750 6641	1.0561 2657	1.1079 673	4.7413 737	1.4949 0305	26.603 9466	1054.168 298	26.2415 001
	PB	1.0000095	0.3290 5659	0.0020 605	0.3781 1418	0.3843 2466	0.2574 4361	0	4.0926 2193	2.0412 0477	8.9073 0578	45.56938 829	8.86755 615

1946 Journal of Asian Development Studies

	EE	1036535.73 6	1.2985 2986	0.9958 9171	1.1706 3143	0.9639 2829	1.2824 4839	1	0.0395 3025	0.1729 3019	0.0516 3009	0.000442 208	0.05363 563
ltcusd	MSE	31.7909137 8	1.3154 024	1.4084 0056	1.3183 8993	1.4872 6852	1.3407 9713	1.4064 3303	5.1804 3383	1.7135 5187	31.732 0465	5541.840 082	32.0960 065
	PB	2.06678887	0.3346 7049	0.0013 9798	0.3875 6101	0.4008 0465	0.2619 4862	0	4.4341 5249	2.2275 6381	8.8989 1344	66.23498 376	8.87463 429
	EE	0.00784575 4	1.3278 679	0.9972 099	1.2566 5683	1.0136 7616	1.2739 5388	1	0.0557 6616	0.2417 0296	0.0426 6497	6.93349 E-05	0.04046 373
usdt	MSE	9.01246104 8	9.0487 2774	9.0201 2207	9.0561 7113	9.0632 1834	9.0404 696	9.0200 8173	18.024 9221	9.4932 8408	9.2719 4259	2.87325 E+11	9.27178 344
	PB	- 0.52842137 3	- 0.6051 025	- 0.5663 049	- 0.6119 477	- 0.6190 994	- 0.5973 701	- 0.5662 05	0	- 0.5214 78	- 0.7446 234	- 64156.39 061	- 0.74404 78
	EE	138075679 84	338.98 538	1244.9 0378	289.52 8706	251.17 1851	442.06 3329	1251.4 937	1	14.584 9586	60.914 7505	3.21852 E-11	60.4262 537
xrpus d	MSE	5.95718665 4	6.7832 0141	6.8758 5015	6.8353 3362	7.0674 5027	6.8071 6909	6.8720 7756	11.914 3715	7.1020 0318	51.341 9542	15630.38 064	51.0494 731
	PB EE	0.06215089 1 6348253.86	- 0.6139 025 17.419	- 0.7199 569 14.793	- 0.6211 975 16.524	- 0.7085 801 13.595	- 0.6558 321 17.361	- 0.7187 599 14.854	0	0.0328 8096 4.9632	- 3.2408 071 0.5516	- 22.25517 876 0.000527	- 3.24669 25 0.56280
cmc		1	- 0.6139 025 17.419 3443 0.2534	- 0.7199 569 14.793 795 0.2861	- 0.6211 975 16.524 4128 0.2563	- 0.7085 801 13.595 9638 0.3434	321 17.361 4226 0.2493	- 0.7187 599 14.854 7978 0.2860	1 4.1313	0.0328 8096 4.9632 3239 1.0067	- 3.2408 071 0.5516 9511 5.8918	- 22.25517 876 0.000527 637 53.71708	- 3.24669 25 0.56280 488 6.00206
	EE	1 6348253.86 2 0.14301541	- 0.6139 025 17.419 3443	- 0.7199 569 14.793 795	- 0.6211 975 16.524 4128	- 0.7085 801 13.595 9638	321 17.361 4226	- 0.7187 599 14.854 7978	1	0.0328 8096 4.9632 3239	- 3.2408 071 0.5516 9511	- 22.25517 876 0.000527 637	- 3.24669 25 0.56280 488
	EE MSE	1 6348253.86 2 0.14301541 4 0.99999339	- 0.6139 025 17.419 3443 0.2534 4026 0.3780	- 0.7199 569 14.793 795 0.2861 5896 0.0004	- 0.6211 975 16.524 4128 0.2563 6155 0.4119	- 0.7085 801 13.595 9638 0.3434 8572 0.5381	321 17.361 4226 0.2493 5296 0.3308	- 0.7187 599 14.854 7978 0.2860 308	1 4.1313 1186 6.7806	0.0328 8096 4.9632 3239 1.0067 7732 3.1273	- 3.2408 071 0.5516 9511 5.8918 9627 7.5637	- 22.25517 876 0.000527 637 53.71708 357 19.01422	- 3.24669 25 0.56280 488 6.00206 874 7.55980 399 0.06008 127
	EE MSE PB EE MSE	1 6348253.86 2 0.14301541 4 0.99999339 6 2983801.83 8 576770547. 1	- 0.6139 025 17.419 3443 0.2534 4026 0.3780 4614 2.6168 9178 0.0139 5456	- 0.7199 569 14.793 795 0.2861 5896 0.0004 4796 0.9991 0467 0.0136 5598	- 0.6211 975 16.524 4128 0.2563 6155 0.4119 4568 2.3891 7158 0.0174 8938	- 0.7085 801 13.595 9638 0.3434 8572 0.5381 518 1.1132 6862 0.0280 5075	321 17.361 4226 0.2493 5296 0.3308 9991 2.8486 6055 0.0119 6573	- 0.7187 599 14.854 7978 0.2860 308 0 1 1 0.0136 1575	1 4.1313 1186 6.7806 4761 0.0087 1562 4.2085 0088	0.0328 8096 4.9632 3239 1.0067 7732 3.1273 0882 0.0401 5701 0.9191 933	- 3.2408 071 0.5516 9511 5.8918 9627 7.5637 936 0.0680 4429 0.2840 0503	- 22.25517 876 0.000527 637 53.71708 357 19.01422 483 0.001807 818 0.121764 56	- 3.24669 25 0.56280 488 6.00206 874 7.55980 399 0.06008 127 0.28550 14
cmc	EE MSE PB EE	1 6348253.86 2 0.14301541 4 0.99999339 6 2983801.83 8	- 0.6139 025 17.419 3443 0.2534 4026 0.3780 4614 2.6168 9178 0.0139	- 0.7199 569 14.793 795 0.2861 5896 0.0004 4796 0.9991 0467 0.0136	- 0.6211 975 16.524 4128 0.2563 6155 0.4119 4568 2.3891 7158 0.0174	- 0.7085 801 13.595 9638 0.3434 8572 0.5381 518 1.1132 6862 0.0280	321 17.361 4226 0.2493 5296 0.3308 9991 2.8486 6055 0.0119	- 0.7187 599 14.854 7978 0.2860 308 0 1 1 0.0136	1 4.1313 1186 6.7806 4761 0.0087 1562 4.2085	0.0328 8096 4.9632 3239 1.0067 7732 3.1273 0882 0.0401 5701 0.9191	- 3.2408 071 0.5516 9511 5.8918 9627 7.5637 936 0.0680 4429 0.2840	- 22.25517 876 0.000527 637 53.71708 357 19.01422 483 0.001807 818 0.121764	- 3.24669 25 0.56280 488 6.00206 874 7.55980 399 0.06008 127 0.28550

eurus d	MSE	45398.0398 1	0.2611 6364	0.0338 2169	0.4980 9639	0.5629 4632	0.1942 7006	0.0337 8994	9.1188 2473	1.4410 8989	0.7284 0534	175.4261 292	0.72719 98
	PB	1520.57767 6	0.4612 8593	0.0008 5836	0.6267 1214	0.8871 7303	0.4213 5748	0	30.016 4113	11.319 9131	6.4932 4259	59.18857 578	6.50099 294
	EE	3.00837E- 07	0.0287 9171	0.9981 2422	0.0145 3271	0.0130 7242	0.0399 5944	1	0.0007 7765	0.0047 1696	0.0547 9498	5.42928 E-05	0.05588 079
cnyus d	MSE	6.4247E+1 4	4.9196 4197	4.9194 0181	4.9212 3358	4.9259 7172	4.9190 6124	4.9193 9134	9.8335 9375	5.9742 0358	5.0139 0914	5.002701 481	5.01393 481
	PB	- 1218813.22 8	0.0624 0089	0.0712 2718	0.0507 6176	0.0300 7349	0.0699 9983	0.0713 1747	0	0.3164 4037	- 0.0597 207	- 0.066125 873	- 0.06203 89
	EE	7.42851E- 15	5911.4 8135	4490.2 7762	3789.9 5205	1491.2 9505	6290.2 4911	4508.3 9743	1	4.4642 7913	200.96 1916	110.3850 721	208.580 987